Model 2216e Temperature Controller

Installation and Operation Handbook

Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1 OPERATION</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1 FRONT PANEL LAYOUT</td>
<td>1-2</td>
</tr>
<tr>
<td>1.2 GETTING STARTED</td>
<td>1-4</td>
</tr>
<tr>
<td>1.2.1 Viewing The Process Value and Setpoint</td>
<td>1-4</td>
</tr>
<tr>
<td>1.2.2 To Adjust The Setpoint</td>
<td>1-4</td>
</tr>
<tr>
<td>1.2.3 Viewing The Display Units</td>
<td>1-5</td>
</tr>
<tr>
<td>1.2.4 Use Of The “SCROLL” Button</td>
<td>1-5</td>
</tr>
<tr>
<td>1.2.5 Use Of The ‘PAGE’ Button</td>
<td>1-6</td>
</tr>
<tr>
<td>PARAMETER LISTS</td>
<td>1-7</td>
</tr>
<tr>
<td>1.4 MANUAL OR AUTOMATIC CONTROL</td>
<td>1-8</td>
</tr>
<tr>
<td>1.4.1 Selecting Auto/Manual Operation</td>
<td>1-8</td>
</tr>
<tr>
<td>1.4.2 How To Manually Adjust Output Power</td>
<td>1-9</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>1-9</td>
</tr>
<tr>
<td>1.6 SETPOINT 1 OR SETPOINT 2</td>
<td>1-10</td>
</tr>
<tr>
<td>1.6.1 To Select Setpoint 1 or Setpoint 2</td>
<td>1-10</td>
</tr>
<tr>
<td>RAMP DWELL FUNCTION</td>
<td>1-11</td>
</tr>
<tr>
<td>1.7.1 To Set up a Ramp/Time Program</td>
<td>1-11</td>
</tr>
<tr>
<td>1.7.2 To Run the Program</td>
<td>1-12</td>
</tr>
<tr>
<td>1.7.3 Power Failure During Program Run</td>
<td>1-12</td>
</tr>
<tr>
<td>LOCATION OF PARAMETERS - BLOCK DIAGRAM</td>
<td>1-13</td>
</tr>
<tr>
<td>NAVIGATION Diagram (Part A)</td>
<td>1-14</td>
</tr>
<tr>
<td>NAVIGATION Diagram (Part B)</td>
<td>1-15</td>
</tr>
<tr>
<td>PARAMETER TABLES</td>
<td>1-16</td>
</tr>
<tr>
<td>1.10.1 HOME Display</td>
<td>1-16</td>
</tr>
<tr>
<td>1.10.2 Alarm List</td>
<td>1-17</td>
</tr>
<tr>
<td>1.10.3 Autotune List</td>
<td>1-17</td>
</tr>
<tr>
<td>1.10.4 PID List</td>
<td>1-18</td>
</tr>
<tr>
<td>1.10.5 Setpoint List</td>
<td>1-19</td>
</tr>
<tr>
<td>1.10.6 Input List</td>
<td>1-20</td>
</tr>
<tr>
<td>1.10.7 On/Off List</td>
<td>1-20</td>
</tr>
<tr>
<td>1.10.8 Output List</td>
<td>1-21</td>
</tr>
<tr>
<td>1.10.9 Communications List</td>
<td>1-21</td>
</tr>
<tr>
<td>1.10.10 Access List</td>
<td>1-21</td>
</tr>
</tbody>
</table>
Chapter 2 INSTALLATION

2.1 INSTRUMENT LAYOUT .. 2-2
2.1.1 Outline dimensions Model 2216e .. 2-3
2.2 INTRODUCTION ... 2-4
2.2.1 Controller labels ... 2-4
2.3 MECHANICAL INSTALLATION .. 2-4
2.3.1 Unplugging and plugging-in the controller ... 2-4
2.4 WIRING .. 2-5
2.4.1 Wire Sizes ... 2-5
2.4.2 Wiring connections .. 2-5
2.4.3 Sensor input connections .. 2-6
2.4.4 Outputs 1 and 2 connections ... 2-6
2.5 PDS MODES .. 2-7
2.6 SNUBBERS ... 2-7
2.7 TYPICAL SINGLE LOOP WIRING DIAGRAM 2-8
2.8 COMMUNICATION CONNECTIONS ... 2-9
2.8.1 Wiring of EIA-485 serial communication links 2-10
2.9 DEVICENET WIRING TO SERIES 2200E CONTROLLERS 2-11
2.9.1 DeviceNet Terminal Functions .. 2-11
2.9.2 Wiring Interconnections for DeviceNet Communications 2-12

Chapter 3 ACCESS LEVELS

3.1 THE DIFFERENT ACCESS LEVELS ... 3-2
3.2 SELECTING AN ACCESS LEVEL ... 3-3
3.2.1 Returning to Operator Level .. 3-5
3.3 EDIT LEVEL .. 3-5
3.3.1 Setting operator access to a parameter .. 3-5
3.3.2 Hiding or revealing a complete list ... 3-6
3.3.4 Promoting a parameter .. 3-6
4. Chapter 4 Tuning 4-1

4.1. WHAT IS TUNING? 4-2

4.2. AUTOMATIC TUNING 4-3

4.2.1. Heating and Cooling Output Cycle Times 4-3

4.3. HOW TO TUNE 4-4

4.3.1. Typical automatic tuning cycle 4-5

4.3.2. Calculation of the cutback values 4-5

4.4. MANUAL TUNING 4-6

4.4.1. Setting the cutback values 4-7

4.4.2. Integrating action and manual reset 4-8

4.4.3. Automatic droop compensation (Adc) 4-8

5. Chapter 5 Configuration 5-1

5.1 SELECTING CONFIGURATION LEVEL 5-2

5.2 SELECTING A CONFIGURATION PARAMETER 5-3

5.3 LEAVING CONFIGURATION LEVEL 5-3

5.4 STEPS INVOLVED IN CONFIGURING A CONTROLLER 5-3

5.5 NAVIGATION DIAGRAM (PART A) 5-4

5.6 NAVIGATION DIAGRAM (PART B) 5-5

5.7 CONFIGURATION PARAMETER TABLES 5-6

5.8 CONFIGURATION OF DIGITAL COMMUNICATIONS 5-14

5.8.1. To Configure the Function and Baud Rate 5-14

5.8.2. To Set Instrument Address 5-15

5.9 DEVICENET 5-15

5.9.1. The EDS File 5-15

5.9.2. ODVA Compliance 5-15

6 Chapter 6 User Calibration 6-1

6.8 WHAT IS THE PURPOSE OF USER CALIBRATION 6-2

6.9 USER CALIBRATION ENABLE 6-3

6.10 SINGLE POINT CALIBRATION 6-4

6.11 TWO POINT CALIBRATION 6-5

6.12 CALIBRATION POINTS AND CALIBRATION OFFSETS 6-6
7 Chapter 7 ALARM CONFIGURATION..........................7-1

7.1 DEFINITION OF ALARMS AND EVENTS7-2
7.1.1 Types Of Alarms..7-2
7.2 DIGITAL OUTPUT FUNCTIONS......................................7-4
7.3 STEP 1 - CONFIGURING THE FOUR ‘SOFT’ ALARMS........7-5
7.4 STEP 2 - ATTACHING AN ALARM TO A PHYSICAL OUTPUT ...7-6
7.5 STEP 3 - GROUPING ALARMS ON A SINGLE OUTPUT7-7
7.6 STEP 4 - REMOVING ALARMS FROM AN OUTPUT7-7

8. Chapter 8 MOTORISED VALVE CONTROL8-1

8.1 PARAMETERS FOR MOTORISED VALVE CONTROL8-2
8.2 COMMISSIONING THE MOTORISED VALVE CONTROLLER ...8-2
8.2.1 Adjusting the minimum on-time..8-2
8.3 MOTORISED VALVE APPLICATIONS.............................8-3
8.3.1 Auto Tuning...8-3
8.3.2 Valve Positioner Set-up Table ...8-3

Chapter 9 LOAD CURRENT MONITORING & DIAGNOSTICS

9.1 LOAD CURRENT MONITORING AND DIAGNOSTICS 9-2
9.2 EXAMPLE WIRING DIAGRAM (MODE 1 & 2 OPERATION) 9-3
9.3 OPERATION...9-4
 To Read Load Current (mode 2 only) ..9-4
9.3.2 To Display Load Current Continuously in the Lower Readout (mode 2
 only) Error! Bookmark not defined.
9.3.3 Display Modes..9-4
9.3.4 How Heater Alarms Are Displayed9-5
9.4 TO SET THE ALARM TRIP LEVELS.................................9-6
9.5 RELAY OUTPUTS ...9-6
9.6 TO CONFIGURE PDS LOAD CURRENT DIAGNOSTICS 9-7
9.6.1 To Configure the Logic Module for PDS modes 1 or 29-7
9.6.2 To Configure Low and High Current Trip Alarms9-8
9.6.3 To Attach Soft Alarms To A Relay Output9-9
9.6.4 The Scaling Factor ...9-10
9.6.5 To Adjust The Scaling Factor ...9-10
Chapter 10 RETRANSMISSION

10.1 WHAT IS RETRANSMISSION

10.2 TO CONFIGURE RETRANSMISSION

10.3 SCALING RETRANSMITTED OUTPUT SIGNALS

10.1.1 To Range Retransmitted Output Q_P

10.1.2 To Range Retransmitted Setpoint S_P or Process Variable P_U

10.1.3 To Range Retransmitted Error Err

Appendix A UNDERSTANDING THE ORDERING CODE

Appendix B SAFETY and EMC INFORMATION

This product is covered by one or more of the following US Patents: 5,484,206 and 5,793,754; Additional patents pending.
PDSIO® is a registered trademark of Eurotherm.
INSTANT ACCURACY™, SSRx Load Doctor™ and SSRx Enhanced Load Doctor™ are trademarks of Eurotherm.
Symbols in Use In This Handbook

- Useful information
- Button Operation
- Caution, (refer to the accompanying documents)
- Functional earth (ground) terminal
Chapter 1 OPERATION

1.1 FRONT PANEL LAYOUT ... 2

1.2 GETTING STARTED... 4

1.2.1 Viewing The Process Value and Setpoint .. 4
1.2.2 To Adjust The Setpoint.. 4
1.2.3 Viewing The Display Units... 5
1.2.4 Use Of The “SCROLL” Button ... 5
1.2.5 Use Of The ‘PAGE’ Button .. 6

PARAMETER LISTS.. 7

1.4 MANUAL OR AUTOMATIC CONTROL ... 8

1.4.1 Selecting Auto/Manual Operation.. 8
1.4.2 How To Manually Adjust Output Power.. 9

1.5 SUMMARY .. 9

1.6 SETPOINT 1 OR SETPOINT 2 ... 10

1.6.1 To Select Setpoint 1 or Setpoint 2.. 10

1.7 RAMP DWELL FUNCTION.. 11

1.7.1 To Set up a Ramp/Time Program... 11
1.7.2 To Run the Program... 12
1.7.3 Power Failure During Program Run... 12

1.8 LOCATION OF PARAMETERS - BLOCK DIAGRAM 13

1.9 NAVIGATION DIAGRAM (Part A)... 14

NAVIGATION Diagram (Part B).. 15

1.10 PARAMETER TABLES... 16

1.10.1 HOME Display .. 16
1.10.2 Alarm List.. 17
1.10.3 Autotune List.. 17
1.10.4 PID List... 18
1.10.5 Setpoint List... 19
1.10.6 Input List... 20
1.10.7 On/Off List... 20
1.10.8 Output List... 21
1.10.9 Communications List... 21
1.10.10 Access List.. 21

1.11 ALARMS .. 22

1.11.1 Types of Alarm Used in the 2200... 22

1.12 ALARM RELAY OUTPUT.. 23

1.12.1 SETTING ALARM LEVELS... 24
1.12.2 ALARM INDICATION AND ACKNOWLEDGEMENT 25
1.12.3 DIAGNOSTIC ALARMS... 26
1.1 FRONT PANEL LAYOUT

Figure 1-1 Model 2216e front panel layout
<table>
<thead>
<tr>
<th>Button or indicator</th>
<th>Name</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP1</td>
<td>Output 1</td>
<td>When lit, it indicates that heating output is on.</td>
</tr>
<tr>
<td>OP2</td>
<td>Output 2</td>
<td>When lit, it indicates that cooling output is on.</td>
</tr>
<tr>
<td>SP2</td>
<td>Setpoint 2</td>
<td>When lit, this indicates that Setpoint 2 has been selected.</td>
</tr>
<tr>
<td>REM</td>
<td>Remote Setpoint</td>
<td>When lit, this indicates that the PDS remote Setpoint input has been selected. 'REM' is also used to indicate that user comms is active.</td>
</tr>
<tr>
<td>MAN</td>
<td>Manual light</td>
<td>When lit, it indicates that manual mode has been selected.</td>
</tr>
<tr>
<td>RUN</td>
<td>Run light</td>
<td>When lit, it indicates that Setpoint rate limit is active.</td>
</tr>
<tr>
<td></td>
<td>Page button</td>
<td>Press to select a new list of parameters.</td>
</tr>
<tr>
<td></td>
<td>Scroll button</td>
<td>Press to select a new parameter in a list.</td>
</tr>
<tr>
<td></td>
<td>Down button</td>
<td>Press to decrease a value in the lower readout.</td>
</tr>
<tr>
<td></td>
<td>Up button</td>
<td>Press to increase a value in lower readout.</td>
</tr>
</tbody>
</table>

Figure 1-2 Controller buttons and indicators

For Valve Positioning, please refer to Appendix D 'Motorised Valve Control'
1.2 GETTING STARTED

Thank you for selecting the 2216e controller. This section shows the principle of operation.

1.2.1 Viewing The Process Value and Setpoint

Install and wire up the controller in accordance with Chapter 2 and switch on. Following a 3 second self-test sequence, this is the display you will see.

![Display Illustration]

The display may flash an alarm message. Refer to the Parameter Tables later in this chapter for a complete list and meaning of the messages.

1.2.2 To Adjust The Setpoint

![Adjust Setpoint Illustration]

After 2 seconds the lower readout will ‘blinks’ indicating that the new value has been accepted. For everyday use you may not need to do anymore than this.
1.2.3 Viewing The Display Units

![Display Units]

Figure 1.5 Pressing or will flash the display units for 0.5 secs

If you get lost, pressing and together will return you to the Home display.

1.2.4 Use Of The “SCROLL” Button

Pressing the scroll button will display the output power level. Continued pressing will display further parameters in the operator scroll list.

![Scroll Button Diagram]

Figure 1-6 Upper readout is parameter name. Lower is value
1.2.5 Use Of The ‘PAGE’ Button

The “PAGE” button accesses parameter LISTS. Parameters are settings in the instrument which, generally, can be changed by the user to suit the process. Examples are: Alarms, Self Tune, etc. They are found under headings called LISTS and a full set is given later in this chapter.

![Diagram showing the use of the 'PAGE' button]

Figure 1-7 Press to choose a parameter list

The actual list headings may be longer or shorter than indicated above and you can customise this for the operator’s convenience in EDIT level, Chapter 3.
1.3 PARAMETER LISTS

Press \(\text{to choose a LIST} \) - “ALARMS” is a good one. This list allows you to set the alarm trip levels. The parameters which appear in the list will vary according to the configuration of your controller.

There are 4 alarms in the controller. The first character is the alarm number. The following three letters indicate alarm type as follows:

- **FSL** Full Scale Low
- **FSH** Full Scale High
- **DH** Deviation High
- **DL** Deviation Low
- **DE** Deviation Band
- **LCR** Low current
- **HCR** High current

Disabled alarms will not be displayed. Chapter 7 gives a full description of alarms.

Figure 1-8 Choose a list. Press \(\text{to select a parameter} \)

If, at any time, no key is pressed within 45 seconds, the display will always return to the “HOME” display.

A complete description of the parameter lists is given on page 1-14.
1.4 MANUAL OR AUTOMATIC CONTROL

The controller can be used in two modes:

Automatic mode - in which the output power is automatically adjusted to hold the temperature at the required value. The controller normally operates in this mode.

Manual mode - in which the output is manually adjusted by the Operator. In this mode the ‘MAN’ light will be on.

One other mode is available:

Remote setpoint - The setpoint is generated as an input signal from a master 2000 series controller. In this mode the REM light is on.

1.4.1 Selecting Auto/Manual Operation

![Diagram](image)

Figure 1-9 Auto/Manual select
1.4.2 How To Manually Adjust Output Power

![Figure 1-10 The “Home Display” in manual mode](image)

Actual Temperature (Process Value)
Output Power Demand
Manual Indicator on

Press and hold to decrease power
Press and hold to increase power

Manual mode is generally used for test and commissioning purposes, take care not to leave the controller in this mode since damage or personal injury could occur.

1.5 SUMMARY

To step through list headers press the Page button to until the required header is obtained.

To step through parameters within a particular list press the Scroll button to until the required parameter is obtained.

To change the value (or state) of a parameter press the Raise button or the Lower button.

The remainder of this chapter provides a complete list of all parameters available.
1.6 SETPOINT 1 OR SETPOINT 2

The instrument has the facility to select two setpoints. This may be useful where it is required to switch control between two different setpoints, for example, from an operating to a standby condition, thus avoiding the necessity to change the setpoint manually each time.

1.6.1 To Select Setpoint 1 or Setpoint 2

This may be done in two ways:
1. By an external switch or relay contact wired to a digital input
2. Through the front panel using the SP list

![Diagram of setpoint selection process]

When setpoint 2 is selected the SP2 beacon illuminates.

Figure 1-11 To Select Setpoint 1 or 2
1.7 RAMP DWELL FUNCTION

The ramp dwell function is selected by turning the setpoint rate limit parameter $SP_{r r}$ to a value. It can be set to RUN in two ways:-

1. Through the front panel using the SP list
2. By an external switch or relay contact wired to a digital input (Module 2 only) configured for reset (REC_{E}). When closed the program will reset. When open the program will run.

 To run the program from the initial reset state, it is necessary to first close the switch then open it.

The controller will then ramp from setpoint 1 to setpoint 2 at a rate set by the $SP_{r r}$ parameter.

When the controller reaches setpoint 2 it can remain at this level for a timed period, using the dE_{ll} parameter.

At the end of the dwell period the action of the controller is determined by the End Type parameter End_{E}.

1.7.1 To Set up a Ramp/Time Program

Set setpoint 1 to the value at which to start the ramp. Set setpoint 2 to the value which you wish to ramp to. This is described in the previous section.

Now press $SP_{r r}$ until $SP_{r r}$ is displayed

Press \uparrow or \downarrow to set the SP ramp rate in units per minute

Press scroll button to dE_{ll}

Press \uparrow or \downarrow to set the dwell time in minutes

Press scroll button to End_{E}

Press \uparrow or \downarrow to choose the action required at the end of the dwell time

In Run mode the controller will ramp from SP 1 to SP 2 at 20.0 units per minute

In Run mode the controller will dwell at SP 2 for 60 minutes

In Run mode the controller will reset at the end of the dwell time. Other choices are:

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Hold$</td>
<td>The program will go into Hold</td>
</tr>
<tr>
<td>$Standby$</td>
<td>The program will go into standby</td>
</tr>
<tr>
<td>dE_{ll}</td>
<td>The program will dwell for an unlimited period</td>
</tr>
</tbody>
</table>

Figure 1-12 Ramp/Dwell Program
1.7.2 To Run the Program

From the previous view, press scroll button to ProG

Press ▲ or ▼ to choose run
To reset the controller to start conditions, select

In Full access level the Status of the program can be read as follows:-

From the previous view, press scroll button to SE Re

The status may be any one of the following:

- **rmp** Ramping from SP1 to SP2
- **dwell** Dwelling at SP2
- **End** The program is complete. If End = rSEt, End will flash briefly before changing to OFF
- **OFF** The program is in the reset state

A program may also be reset or run using an external switch contact if a digital input, in Module 2, has been configured. See Configuration section.

Figure 1-13 To Run the Ramp/Dwell Program

1.7.3 Power Failure During Program Run

1. **During Ramp.** After return of power, the working setpoint will servo to the current PV value, and the ramp continues to SP2 followed by the timed dwell.
2. **During Dwell.** After return of power the working setpoint will servo to PV, the ramp continues to SP2 followed by full programmed dwell. In effect this causes the program to restart.

Use the Hide, Reveal and Promote features to customise the display for a programmer. See Chapter 3.
1.8 LOCATION OF PARAMETERS - BLOCK DIAGRAM

The controller consists of a number of internal function blocks connected together to create a temperature controller. Each function block has a number of parameters found in lists to which the user has access. The block diagram shows location of these parameters within the controller.

Figure 1-14 Controller Block Diagram
1.9 NAVIGATION DIAGRAM (PART A)

The navigation diagram shows a full list of possible parameters. However, some may not appear because they are dependent upon the particular controller variant.

Figure 1.15a Navigation diagram
NAVIGATION DIAGRAM (PART B)

Notes:
1. Either the PID list or the On/Off list will be present depending upon the type of control in use.
2. The last three characters depend upon the type of alarm configured.
3. Absolute setpoint limits are set in configuration, see Chapter 5.
4. UPDS only for VP. Refer to VP Chapter 8.
5. ApPS is Mode 2 PDS.
6. mCR used for VP version. Refer to VP Chapter 8.
8. Is only available if using PDS comms in the HA slot.
9. wSP is available if using ramp to setpoint.

Complete lists or individual parameters normally hidden in Operator level. To see all the available parameters you must select Full level. See Chapter 3, Access Levels

Only displayed when option selected

Figure 1.15b Navigation diagram
1.10 PARAMETER TABLES

The tables which follow list all parameters that are available in Full operator level.

<table>
<thead>
<tr>
<th>Name</th>
<th>Parameter Description</th>
<th>Default Value</th>
<th>Min Value</th>
<th>Max Value</th>
<th>Units</th>
<th>Customer Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display mnemonic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brief description of parameter or function</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Factory configured value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.10.1 HOME Display

<table>
<thead>
<tr>
<th>Name</th>
<th>Parameter Description</th>
<th>Default Value</th>
<th>Min Value</th>
<th>Max Value</th>
<th>Units</th>
<th>Customer Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display mnemonic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brief description of parameter or function</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Factory configured value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional parameters may appear in the Home display if the ‘promote’ feature has been used (see Edit Level, Chapter 3).
1.10.2 Alarm List

<table>
<thead>
<tr>
<th>Name</th>
<th>Parameter Description</th>
<th>Default Value</th>
<th>Min Value</th>
<th>Max Value</th>
<th>Units</th>
<th>Customer Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alarm List</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-**</td>
<td>Alarm 1 set point</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>as display</td>
</tr>
<tr>
<td>2-**</td>
<td>Alarm 2 set point</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>as display</td>
</tr>
<tr>
<td>3-**</td>
<td>Alarm 3 set point</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>as display</td>
</tr>
<tr>
<td>4-**</td>
<td>Alarm 4 set point</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>as display</td>
</tr>
</tbody>
</table>

In place of dashes, the last three characters indicate the alarm type, as follows:

- **FSH**: Full Scale High alarm
- **FSL**: Full Scale Low alarm
- **dEU**: Deviation band alarm
- **dH**: Deviation High alarm
- **dL**: Deviation Low alarm
- **Lcr**: Low current alarm
- **Hcr**: High current alarm
- **Hy**: Hysteresis
- **Lbt**: Loop break time

1.10.3 Autotune List

<table>
<thead>
<tr>
<th>Autotune</th>
<th>Autotune List</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtunE</td>
<td>Self tune enable</td>
</tr>
<tr>
<td>Adc</td>
<td>Automatic droop compensation (Manual Reset) enable (only present if EtunE set to OFF)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Autotune</th>
<th>Autotune List</th>
<th>Autotune List</th>
<th>Autotune List</th>
<th>Autotune List</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>On</td>
</tr>
</tbody>
</table>

2216e Controller
1.10.4 PID List

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Default Value</th>
<th>Min Value</th>
<th>Max Value</th>
<th>Units</th>
<th>Customer Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd</td>
<td>PID List</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>Proportional band</td>
<td>200</td>
<td>30</td>
<td>1</td>
<td>9999</td>
<td>as display</td>
</tr>
<tr>
<td>ti</td>
<td>Integral time</td>
<td>360</td>
<td>360</td>
<td>OFF</td>
<td>9999</td>
<td>seconds</td>
</tr>
<tr>
<td>td</td>
<td>Derivative time</td>
<td>60</td>
<td>60</td>
<td>OFF</td>
<td>9999</td>
<td>seconds</td>
</tr>
<tr>
<td>rE5</td>
<td>Manual reset (appears when ti set to OFF)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.00</td>
<td>100.0</td>
<td>%</td>
</tr>
<tr>
<td>Lcb</td>
<td>Cutback low</td>
<td>Auto</td>
<td>Auto</td>
<td>0</td>
<td>9999</td>
<td>as display</td>
</tr>
<tr>
<td>Hcb</td>
<td>Cutback high</td>
<td>Auto</td>
<td>Auto</td>
<td>0</td>
<td>9999</td>
<td>as display</td>
</tr>
<tr>
<td>rELC</td>
<td>Relative cool gain (set 1)</td>
<td>100</td>
<td>1.00</td>
<td>0.01</td>
<td>9.99</td>
<td></td>
</tr>
</tbody>
</table>
1.10.5 Setpoint List

<table>
<thead>
<tr>
<th>Name</th>
<th>Parameter Description</th>
<th>Default Value</th>
<th>Min Value</th>
<th>Max Value</th>
<th>Units</th>
<th>Customer Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Point List</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEL</td>
<td>Select SP1 or SP2</td>
<td>SP1</td>
<td>SP1</td>
<td>SP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-r</td>
<td>Local or remote setpoint select</td>
<td>Loc</td>
<td>Loc</td>
<td>rmt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP I</td>
<td>Setpoint 1 value</td>
<td>25</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 2</td>
<td>Setpoint 2 value</td>
<td>25</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rmSP</td>
<td>Remote setpoint</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loc L</td>
<td>Local trim</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 1L</td>
<td>Setpoint 1 low limit</td>
<td>0</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 1H</td>
<td>Setpoint 1 high limit</td>
<td>1000</td>
<td>2100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 2L</td>
<td>Setpoint 2 low limit</td>
<td>0</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 2H</td>
<td>Setpoint 2 high limit</td>
<td>1000</td>
<td>2100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loc L</td>
<td>Local setpoint trim low limit</td>
<td>-210</td>
<td>-316</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loc H</td>
<td>Local setpoint trim high limit</td>
<td>1200</td>
<td>2192</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP rr</td>
<td>Setpoint rate limit</td>
<td>OFF</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dwEl</td>
<td>Dwell time</td>
<td>OFF</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End E</td>
<td>End type</td>
<td>rSEt</td>
<td>rSEt</td>
<td>rSEt: hold</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ProG</td>
<td>Program control</td>
<td>rSEt</td>
<td>rSEt</td>
<td>run'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE Re</td>
<td>Status of program</td>
<td>OFF</td>
<td></td>
<td>rmp: dwEl</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dwEl: End</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>End: OFF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- UK and USA values are provided for certain parameters.
- Default values are denoted in the table with the prefix 'SP' and 'Loc.'
- Display ranges are indicated with 'As display range.'
1.10.6 Input List

<table>
<thead>
<tr>
<th>Name</th>
<th>Parameter Description</th>
<th>Default Value</th>
<th>Min Value</th>
<th>Max Value</th>
<th>Units</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Input list</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEL</td>
<td>Input filter time constant</td>
<td>16</td>
<td>16</td>
<td>OFF</td>
<td>9999</td>
<td>secs</td>
</tr>
<tr>
<td>OFS</td>
<td>PV Offset</td>
<td>-999</td>
<td>9999</td>
<td>display</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The next 5 parameters will appear if User calibration has been enabled in configuration level. To perform a user calibration refer to Ch 6.

- **CAL** will re-instate factory settings and disable User Calibration. Default setting is:
 - UK: /c31/c21/c25/c54
 - USA: /c56/c16/c29/c53
 - will re-instate any previously set User Calibration offsets and make available User Calibration parameters as follows:

<table>
<thead>
<tr>
<th>CALS</th>
<th>User calibration select</th>
<th>None</th>
<th>None</th>
<th>Hi</th>
<th>Lo</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adj</td>
<td>Adjust calibrated reference source</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following two parameters are always present in Full Access level but not in Operator level:

- **CJC** Cold Junction compensation temperature
- **mU** Millivolt input

* A minimum filter time constant of one second is recommended to provide sufficient noise immunity.

~ Do not make adjustments to the \(R_dJ \) parameter unless you wish to offset the controller calibration.

1.10.7 On/Off List

<table>
<thead>
<tr>
<th>Name</th>
<th>On/off list</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This set of parameters only appear if On/Off control has been configured</td>
</tr>
<tr>
<td>hSH</td>
<td>Heat hysteresis</td>
</tr>
<tr>
<td>hSC</td>
<td>Cool hysteresis</td>
</tr>
<tr>
<td>hCD</td>
<td>Heat/Cool dead band</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default Value</th>
<th>Min Value</th>
<th>Max Value</th>
<th>Units</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>hSH</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9999</td>
<td>display</td>
</tr>
<tr>
<td>hSC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9999</td>
<td>display</td>
</tr>
<tr>
<td>hCD</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>9999</td>
<td>display</td>
</tr>
</tbody>
</table>
1.10.8 Output List

<table>
<thead>
<tr>
<th>Name</th>
<th>Parameter Description</th>
<th>Default Value</th>
<th>Min Value</th>
<th>Max Value</th>
<th>Units</th>
<th>Customer Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output list

Note: If On/Off control is configured only SPD OP H on E will appear in the following list.

OP L D Low (power) output limit
- 000 or 1000 (cool) - 000 1000 %

OP H High (power) output limit
- 000 1000 - 000 1000 %

SPD OP Output setting when in sensor break
- 00 - 000 1000 %

CYC H Heat cycle time
- 10 (logic) 20 (relay) 0.2 9999 secs

Hot H Heat output min. on time
- 0.1 0.1 9999

CYCL C Cool cycle time
- 10 (logic) 20 (relay) 0.2 9999 secs

Cool H Cool output min. on time
- 0.1 0.1 9999

mTr VP motor travel time
- 0.0 9999 secs

1. Are not used for Valve Position Control.

1.10.9 Communications List

| Addr | Comms list | Communications address | 1 | 1 | 1 | 254 |

1.10.10 Access List

| Addr | Access list | Full and Edit level password | 1 | 1 | 0 | 9999 |

| Addr | Goto level' OPER' FULL Edi' or conF | OPER | OPER | OPER | conF |

| Addr | Configuration level password | 2 | 2 | 0 | 9999 |
1.11 ALARMS

Alarms are used to alert an operator when a pre-set level has been exceeded. They are normally used to switch an output (see 1.12) – usually a relay – to provide external actions to the process.

Soft Alarms are indication only and do not operate an output.

Events are generally defined as conditions, which occur as part of the operation of the plant. They do not require operator intervention and, therefore, do not cause an alarm message to be displayed. They can be attached to operate an output (relay) in the same way as an alarm.

1.11.1 Types of Alarm Used in the 2200

This section shows graphically the operation of different types of alarm used in the controller. The graphs show changes in PV plotted against time.
Hysteresis is the difference between the point at which the alarm switches ON and the point at which it switches OFF. It is used to prevent relay chatter.

Blocking Alarms only occur after the start up phase when the alarm has first entered a safe state. The alarm is only indicated the next time it is active. It is used, for example, to ignore start up conditions which are not representative of running conditions.

Latching Alarms see 7.1.1.

Delay a settable time between an alarm occurring and it being displayed on the indicator.

Loop Break Alarm. The control loop is considered to be open if the output demand signal increases to saturation level but the error does not reduce after a set period of time. The time period can be set manually, depending on the response time of the loop, using the parameter lb in the Alarm List (section 1.10.2). It is also set automatically, following an autotune (see chapter 4), to 3 x t_i (integral time). The time period, lb, starts from the point at which the output demand reaches saturation. The loop break alarm lb is displayed (as a diagnostic alarm, see section 1.12.3.) at the end of this period.

1.12 ALARM RELAY OUTPUT

Alarms can operate a specific output (usually a relay). Any individual alarm can operate an individual relay or any combination of alarms can operate an individual relay. They are either supplied pre-configured in accordance with the ordering code or set up in configuration level.

See Chapter 5 for further information.

![Figure 1-17: Attaching Alarms to an Output](image-url)
1.12.1 SETTING ALARM LEVELS

Up to 4 Alarms may be configured. Each alarm is given a name to describe its function - see table below:
If an alarm is not configured it does not appear in the list below.

In place of dashes, letters indicate alarm type as follows:
- FSL Full Scale Low
- FSH Full Scale High
- dE Deviation Band
- dH Deviation High
- dL Deviation Low
- Lcr Low current
- Hcr High current

Press to return to list header

Figure 1-18 To Set Alarm Trip Levels
1.12.2 ALARM INDICATION AND ACKNOWLEDGEMENT

When an alarm occurs, the alarm mnemonic (e.g. \textit{IFSH}) will be indicated by a double flash in the HOME display. Similarly, if more than one alarm occurs the relevant mnemonics are flashed in the HOME display. The double flash will continue whilst the alarm condition is present and is not acknowledged.

Press \texttt{C} and \texttt{D} together to acknowledge the alarm.

If the alarm condition is still present when the alarm is acknowledged, it will be indicated by a single flash of the alarm mnemonic and this single flash will be repeated for as long as the alarm condition remains. When the alarm condition disappears the indication will also disappear.

If the alarm condition is no longer present when the alarm is acknowledged, the flashing message will disappear immediately on acknowledgement.

If a relay has been attached to the alarm output (see Chapter 7 ‘Alarm Operation’), it will operate when the alarm condition occurs and remain in the operated condition until the alarm is acknowledged AND it is no longer present.
1.12.3 DIAGNOSTICALARMS

These indicate that a fault exists in either the controller or the connected devices.

<table>
<thead>
<tr>
<th>Display shows</th>
<th>What it means</th>
<th>What to do about it</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEEr</td>
<td>Electrically Erasable Memory Error: The value of an operator or configuration parameter has been corrupted</td>
<td>This fault will automatically take you into configuration level. Check all of the configuration parameters before returning to operator level. Once in operator level, check all of the operator parameters before resuming normal operation. If the fault persists or occurs frequently, contact your supplier</td>
</tr>
<tr>
<td>Sbr</td>
<td>Sensor Break: Input sensor is unreliable or the input signal is out of range</td>
<td>Check that the sensor is correctly connected</td>
</tr>
<tr>
<td>Lbr</td>
<td>Loop Break: The feedback loop is open circuit</td>
<td>Check that the heating and cooling circuits are working properly</td>
</tr>
<tr>
<td>LdF</td>
<td>Load failure Indication that there is a fault in the heating circuit or the solid state relay</td>
<td>This is an alarm generated by feedback from a TE10S solid state relay (SSR) operating in PDS SSRx Load Doctor see Electrical installation Chapter 2. It indicates either an open or short circuit SSR, blown fuse, missing supply or open circuit heater</td>
</tr>
<tr>
<td>SS-F</td>
<td>Solid state relay failure Indication that there is a fault in the solid state relay</td>
<td>This is an alarm generated by feedback from a TE10S solid state relay (SSR) operating in PDS SSRx Load Doctor see Electrical installation Chapter 2. It indicates either an open or short circuit condition in the SSR</td>
</tr>
<tr>
<td>Htr-F</td>
<td>Heater failure Indication that there is a fault in heating circuit</td>
<td>This is an alarm generated by feedback from a TE10S solid state relay (SSR) operating in PDS SSRx Enhanced Load Doctor see Electrical installation Chapter 2. It indicates either a blown fuse, missing supply or open circuit heater</td>
</tr>
<tr>
<td>HuEr</td>
<td>Hardware error Indication that a module is the wrong type</td>
<td>Check that the correct modules are fitted</td>
</tr>
<tr>
<td>No.IO</td>
<td>No I/O module Modules are configured but not fitted</td>
<td>This error message normally occurs when pre-configuring a controller without installing any of the required I/O modules</td>
</tr>
</tbody>
</table>

Figure 1.19a Diagnostic alarms - continued on the next page
Diagnostic alarms continued

These indicate that a fault exists in either the controller or the connected devices.

<table>
<thead>
<tr>
<th>Display shows</th>
<th>What it means</th>
<th>What to do about it</th>
</tr>
</thead>
<tbody>
<tr>
<td>remote F</td>
<td>Remote input failure. The PDS input is open circuit. (PDS Also known as SST</td>
<td>Check for open or short circuit wiring on the PDS input</td>
</tr>
<tr>
<td></td>
<td>– Smart Setpoint Transmission)</td>
<td></td>
</tr>
<tr>
<td>LLLL</td>
<td>Out of Display range, low reading</td>
<td>Check the value of the display range</td>
</tr>
<tr>
<td>HHHH</td>
<td>Out of Display range, high reading</td>
<td>Check the value of the display range</td>
</tr>
<tr>
<td>Err 1</td>
<td>Error 1: ROM self-test fail</td>
<td>Return the controller for repair</td>
</tr>
<tr>
<td>Err 2</td>
<td>Error 2: RAM self-test fail</td>
<td>Return the controller for repair</td>
</tr>
<tr>
<td>Err 3</td>
<td>Error 3: Watchdog fail</td>
<td>Return the controller for repair</td>
</tr>
<tr>
<td>Err 4</td>
<td>Error 4: Keyboard failure Stuck button, or a button was pressed during power</td>
<td>Switch the power off and then on without touching any of the controller buttons.</td>
</tr>
<tr>
<td></td>
<td>up.</td>
<td></td>
</tr>
<tr>
<td>Err 5</td>
<td>Error 5: Input circuit failure</td>
<td>Return the controller for repair*</td>
</tr>
<tr>
<td>Pow F</td>
<td>Power failure. The line voltage is too low</td>
<td>Check that the supply to the controller is within the rated limits</td>
</tr>
<tr>
<td>tUEr</td>
<td>Tune error. If any one stage of the tuning process exceeds 2 hours the tune</td>
<td>Check response time of process: check that the sensor has not failed; check that</td>
</tr>
<tr>
<td></td>
<td>error alarm occurs</td>
<td>the loop is not broken. Acknowledge by pressing 'page' button and 'scroll' button</td>
</tr>
<tr>
<td></td>
<td></td>
<td>together.</td>
</tr>
</tbody>
</table>

Figure 1.19b Diagnostic alarms

If the user has disassembled and reassembled the instrument, this error can occur if any connectors are not seated properly.
Chapter 2 INSTALLATION

2.1 INSTRUMENT LAYOUT ... 2
 2.1.1 Outline dimensions Model 2216e .. 3

2.2 INTRODUCTION .. 4
 2.2.1 Controller labels .. 4

2.3 MECHANICAL INSTALLATION .. 4
 2.3.1 Unplugging and plugging-in the controller ... 4

2.4 WIRING ... 5
 2.4.1 Wire Sizes .. 5
 2.4.2 Wiring connections .. 5
 2.4.3 Sensor input connections .. 6
 2.4.4 Outputs 1 and 2 connections .. 6

2.5 PDS MODES .. 7

2.6 SNUBBERS ... 7

2.7 TYPICAL SINGLE LOOP WIRING DIAGRAM 8

2.8 COMMUNICATION CONNECTIONS .. 9
 2.8.1 Wiring of EIA-485 serial communication links 10

2.9 DEVICENET WIRING TO SERIES 2200E CONTROLLERS 11
 2.9.1 DeviceNet Terminal Functions .. 11
 2.9.2 Wiring Interconnections for DeviceNet Communications 12
2.1 INSTRUMENT LAYOUT

KEY
1. Display screen
2. Latching ears
3. Panel sealing gasket
4. Panel retaining clips
5. Label
6. Sleeve
7. Terminal covers
8. Ratchets

Figure 2-1: 2216e 1/16 DIN controller
2.1.1 Outline Dimensions Model 2216e

The controller plugs into a plastic sleeve, which in turn fits into the panel cutout shown above.

Figure 2-2: Outline dimensions Model 2216e controller
2.2 INTRODUCTION

The Model 2216e is a precision temperature controller with self tuning. It has a modular hardware construction which provides two control outputs, one alarm relay and one communications port.

2.2.1 Controller Labels

The labels on the sides of the controller identify the ordering code, the serial number, and the wiring connections.

Appendix A, Understanding the Ordering Code explains the hardware and software configuration of your particular controller.

2.3 MECHANICAL INSTALLATION

To install the controller

1. Cut the panel to the relevant hole size shown in Figure 2-2.
2. Insert the controller through the front of this cutout.
3. Spring the upper and lower panel retaining clips into place. Secure the controller in position by holding it level and pushing both retaining clips forward.

If the panel retaining clips subsequently need removing, they can be unhooked from the side with either your fingers or a screwdriver.

2.3.1 Unplugging and Plugging-in the Controller

The controller can be unplugged from its sleeve by easing the latching ears outwards and pulling it forward out of the sleeve. When plugging the controller back into its sleeve, ensure that the latching ears click into place to maintain moisture sealing protection.
2.4 WIRING

Please read Appendix B, Safety and EMC information before proceeding.

WARNING
Please ensure that the controller is correctly configured for your application. Incorrect configuration could result in damage to the process being controlled, and/or personal injury. The controller may either have been configured when ordered, or may need configuring now. See Chapter 5, Configuration.

![Model 2216e Wiring Connections](image)

* The ground connection is not required for electrical safety but must be connected to satisfy EMC requirements.

2.4.1 Wire Sizes

All electrical connections are made to the screw terminals at the rear of the controller. They accept wire sizes from 0.5 to 1.5 mm² (16 to 22 AWG), and are protected by a hinged cover to prevent hands or metal making accidental contact with live wires. Rear terminals should be tightened to a torque of 0.4Nm (3.5 lb in).

2.4.2 Wiring Connections

The wiring connections are shown in Figure 2-3. Outputs 1 and 2 are factory fitted modules which can be any one of the types shown in figure 2-5. Check the ordering code on the controller side label to determine which have been fitted.
2.4.3 Sensor Input Connections

The connections for the various types of input are as follows:

<table>
<thead>
<tr>
<th>Thermocouple</th>
<th>Resistance thermometer</th>
<th>mA input</th>
<th>Volts or mV inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td>VI</td>
<td>VI</td>
<td>VI</td>
</tr>
<tr>
<td>V+</td>
<td>V+</td>
<td>V+</td>
<td>+</td>
</tr>
<tr>
<td>V-</td>
<td>V-</td>
<td>V-</td>
<td>-</td>
</tr>
</tbody>
</table>

2.49Ω current sense resistor

![Figure 2-4: Sensor Input Connections](image)

Sensor inputs should not be paralleled.

2.4.4 Outputs 1 and 2 Connections

Outputs 1 and 2 can be any one of the types shown in the table below, configured to perform any one of the functions shown.

To check which outputs are installed, and their configuration, refer to the ordering code and the wiring information on the controller side labels.

<table>
<thead>
<tr>
<th>Connections</th>
<th>Output 1</th>
<th>Output 2</th>
<th>Possible functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module type</td>
<td>1A</td>
<td>1B</td>
<td>2A</td>
</tr>
<tr>
<td>Relay: 2-pin (2A, 264 Vac max.)</td>
<td></td>
<td></td>
<td>Heating</td>
</tr>
<tr>
<td>Logic: non-isolated* (18Vdc at 24mA)</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Triac (1A, 30 to 264Vac)</td>
<td>Line</td>
<td>Load</td>
<td>Line</td>
</tr>
<tr>
<td>DC control: isolated (18Vdc, 20mA max)</td>
<td>+</td>
<td>-</td>
<td>DC not available in output 2</td>
</tr>
</tbody>
</table>

*Logic can also be configured as logic input on module 2A.
*PDS Mode 1 & 2 are only supported in Output 1.

![Figure 2-5: Outputs 1 and 2 connections](image)
2.5 PDS MODES

PDS is a proprietary technique developed for bi-directional communication over a single pair of wires. There are several operating modes.

In **SSRx Load Doctor** a logic output delivers a power demand signal to a TE10S solid state relay (SSR) and the SSR responds with a single load circuit failure message.

In **SSRx Enhanced Load Doctor** a logic output delivers a power demand signal to an SSR and the SSR responds with the ON state RMS load current, and two fault messages - SSR failure or heater circuit failure.

2.6 SNUBBERS

The controller is supplied with 'snubbers' (15nF +100Ω) which should be wired across the relay or triac outputs when switching inductive loads such as mechanical contactors and solenoid valves. The snubbers are used to prolong contact life and to suppress interference when switching such loads.

Snubbers pass 0.6mA at 110Vac and 1.2mA at 240Vac, which may be sufficient to hold in high impedance relay coils. They should not, therefore, be used in such installations.

WARNING

When a relay contact is used in an alarm circuit ensure that the current passing through the snubber when the relay contact is open does not hold in low power electrical loads and thereby interfere with the failsafe operation of the alarm circuit.
2.7 TYPICAL SINGLE LOOP WIRING DIAGRAM

Figure 2-6: Typical wiring diagram, Model 2216e Controller
2.8 COMMUNICATION CONNECTIONS

The communication option can be either of four types shown in the table below:

<table>
<thead>
<tr>
<th>Communications type</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-wire EIA-422 serial communications*</td>
<td>A' (RX +)</td>
</tr>
<tr>
<td></td>
<td>B' (RX -)</td>
</tr>
<tr>
<td></td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>A (TX +)</td>
</tr>
<tr>
<td></td>
<td>B (TX -)</td>
</tr>
<tr>
<td>EIA-232 serial communications</td>
<td>Not used</td>
</tr>
<tr>
<td></td>
<td>Not used</td>
</tr>
<tr>
<td></td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>B</td>
</tr>
<tr>
<td>PDS Setpoint input (SST)</td>
<td>Not used</td>
</tr>
<tr>
<td></td>
<td>Not used</td>
</tr>
<tr>
<td></td>
<td>Not used</td>
</tr>
<tr>
<td></td>
<td>Signal</td>
</tr>
<tr>
<td></td>
<td>Common</td>
</tr>
<tr>
<td>2-wire EIA-485 Serial Communications</td>
<td>Not used</td>
</tr>
<tr>
<td></td>
<td>Not used</td>
</tr>
<tr>
<td></td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>A (+)</td>
</tr>
<tr>
<td></td>
<td>B (-)</td>
</tr>
</tbody>
</table>

*The 4-wire EIA-422 communication board can be modified to support 2-wire 485 communication. Please consult factory.
2.8.1 Wiring of EIA-485 Serial Communication Links

Standard EIA-485 is a 2-wire connection which allows up to 32 controllers to be multi-dropped from a single communications link over a distance of up to 1.2Km. To ensure reliable operation of the communications link, (without data corruption due to noise or line reflections) the connections between the controller should be made using a twisted pair of wires inside a shielded cable with the connections terminated with resistors in the manner shown in this diagram. This diagram also shows the use of a converter to connect the 2-wire EIA-485 link into a standard EIA-232 computer port.

Note:
All termination resistors are 220 ohm 1/4W carbon composition.
Local grounds are at equipotential. Where equipotential is not available wire into separate zones using a galvanic isolator.

Figure 2-8: 2-wire EIA-485 wiring
2.9 DEVI CENET WIRING TO SERIES 2200E CONTROLLERS

This section covers the DeviceNet digital communications option for the model 2216e PID controller. To configure DeviceNet communications refer to section 5.9.

2.9.1 DeviceNet Terminal Functions

<table>
<thead>
<tr>
<th>Series 2200e Terminal</th>
<th>CAN Label</th>
<th>Color Chip</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA V+</td>
<td>Red</td>
<td>DeviceNet network power positive terminal. Connect the red wire of the DeviceNet cable here. If the DeviceNet network does not supply the power, connect to the positive terminal of an external 11-25 Vdc power supply.</td>
<td></td>
</tr>
<tr>
<td>HC SHIELD</td>
<td>None</td>
<td>Shield/Drain wire connection. Connect the DeviceNet cable shield here. To prevent ground loops, the DeviceNet network should be grounded in only one location.</td>
<td></td>
</tr>
<tr>
<td>HE V-</td>
<td>Black</td>
<td>DeviceNet network power negative terminal. Connect the black wire of the DeviceNet cable here. If the DeviceNet network does not supply the power, connect to the negative terminal of an external 11-25 Vdc power supply.</td>
<td></td>
</tr>
</tbody>
</table>

Note: Power taps are recommended to connect the DC power supply to the DeviceNet trunk line. Power taps include:

⚠️ A Schottky Diode to connect the power supply V+ and allows for multiple power supplies to be connected.
2 fuses or circuit breakers to protect the bus from excessive current which could damage the cable and connectors.
2.9.2 Wiring Interconnections for DeviceNet Communications

Figure 2-9: Wiring Connections for 2200e Series DeviceNet Controllers

- **V+**
- **Wht**
- **Blu**
- **Blk**
- **CAN-H**
- **Drain**
- **CAN-L**
- **V-**

Network Supply
- 24Vdc (±1%)
- 250mV p-p Ripple

Daisy chain to further instruments

* Fit to last instrument in the chain

2-12
2216e Controller
Chapter 3 ACCESS LEVELS

3.1 THE DIFFERENT ACCESS LEVELS .. 2

3.2 SELECTING AN ACCESS LEVEL... 3
 3.1.1 Returning to Operator Level... 5

3.3 EDIT LEVEL ... 5
 3.1.2 Setting operator access to a parameter 5
 3.1.3 Hiding or revealing a complete list ... 6
 3.1.4 Promoting a parameter .. 6
3.1 THE DIFFERENT ACCESS LEVELS

<table>
<thead>
<tr>
<th>Access level</th>
<th>Display shows</th>
<th>What you can do</th>
<th>Password Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>OPER</td>
<td>In this level operators can view and adjust the value of parameters defined in Edit level (see below).</td>
<td>No</td>
</tr>
<tr>
<td>Full</td>
<td>FULL</td>
<td>In this level all the parameters relevant to a particular configuration are visible. All alterable parameters may be adjusted.</td>
<td>Yes</td>
</tr>
<tr>
<td>Edit</td>
<td>Edi_e</td>
<td>In this level you can set which parameters an operator in Operator level is able to view and adjust. You can hide or reveal complete lists and individual parameters within each list, and you can make parameters read-only or alterable. You can also promote parameters to the home list. (See Edit level at the end of the chapter).</td>
<td>Yes</td>
</tr>
<tr>
<td>Configuration</td>
<td>CONF</td>
<td>This special level allows access to set up the fundamental characteristics of the controller.</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Figure 3-1 Access levels
3.2 SELECTING AN ACCESS LEVEL

Access to Full, Edit or Configuration levels is protected by a password to prevent unauthorised access.

If you need to change the password, see Chapter 5, Configuration.

3.1.1 Access list header

Press \(\uparrow\) until you reach the access list header 'Access'.

Press the Scroll button

3.1.2 Password entry

The password is entered from the 'Code' display.

Enter the password using the \(\uparrow\) or \(\downarrow\) buttons. Once the correct password has been entered, there is a two second delay after which the lower readout will change to show 'Pass', indicating that access is now unlocked.

The pass number is set to '1' when the controller is shipped from the factory.

Note: A special case exists if the password has been set to '0'. In this case access will be permanently unlocked and the lower readout will always show 'Pass'.

Press the Scroll button to proceed to the 'Goto' display.

(If an incorrect password has been entered and the controller is still ‘locked’ then pressing Scroll at this point will simply return you to the 'Access' list header.)

Note: From this 'Code' display, you can access “read only” configuration level by pressing \(\uparrow\) and \(\downarrow\) together.

To escape, press \(\uparrow\) and \(\downarrow\) together.
3.1.3 Level selection

The 'Goto' display allows you to select the required access level.

Use ▲ and ▼ to select from the following display codes:

- OPER: Operator level
- FULL: Full level
- EDIT: Edit level
- CONF: Configuration level

Press the Scroll button

If you selected either 'OPER', 'FULL' or 'EDIT' level you will be returned to the 'LIST' list header in the level that you chose. If you selected 'CONF', you will get an alternative display showing 'Conf' in the upper readout (see below).

3.1.4 Configuration password

When the 'Conf' display appears, you must enter the Configuration password in order to gain access to Configuration level. Do this by repeating the password entry procedure described in the previous section.

The configuration password is set to 'Conf' when the controller is shipped from the factory. If you need to change the configuration password, see Chapter 5, Configuration.

Press the Scroll button

3.1.5 Configuration level

The first display of configuration is shown. See chapter 5, Configuration for details of the configuration parameters.

For instructions on leaving configuration level see Chapter 5, Configuration.
3.1.1 Returning to Operator Level

To return to operator level from either 'FULL' or 'EDIT' level, repeat entry of the password and select ‘OPER’ on the ‘Goto’ display.

In ‘Edit’ level the controller will automatically return to operator level if no button is pressed for 45 seconds.

3.3 EDIT LEVEL

Edit level is used to set which parameters you can see and adjust in Operator level. It also gives access to the ‘Promote’ feature which allows you to select and add (‘Promote’) up to twelve parameters into the Home display list, thereby giving simple access to commonly used parameters.

3.1.2 Setting operator access to a parameter

First you must select ‘EDIT’ level, as shown on the previous page.

Once in ‘EDIT’ level you select a list or a parameter within a list in the same way as you would in Operator or Full level. That is, you move from list header to list header by pressing the Page button, and from parameter to parameter within each list using the Scroll button. However, in 'Edit level what is displayed is not the value of a selected parameter but a code representing the parameter’s availability in Operator level.

When you have selected the required parameter, use the ▲ and ▼ buttons to set its availability in operator level.

There are four codes:

- ▲ Makes a parameter alterable in Operator level
- ▼ Promotes a parameter into the Home display list
- ▼ Makes a parameter or list header read-only (it can be viewed but not altered)
- ▼ Hides a parameter or list header.

For example:

The parameter selected is the set point for Alarm 2 - Full Scale Low

It will be alterable in Operator level
3.1.3 Hiding or revealing a complete list

To hide a complete list of parameters, all you have to do is hide the list header. If a list header is selected only two selections are available: `rERd` and `Hi dE`.

(It is not possible to hide the 'ACC5' list which will always display the code: 'L5').

3.1.4 Promoting a parameter

Scroll through the lists to the required parameter and choose the `PrO` code. The parameter is then automatically added (promoted) into the Home display list (the parameter will also be accessible as normal from the standard lists). A maximum of 12 parameters can be promoted. Promoted parameters are automatically 'alterable'.
4. Chapter 4 TUNING

4. Chapter 4 TUNING ... 1

4.1. WHAT IS TUNING? ... 2

4.2. AUTOMATIC TUNING .. 3
 4.2.1. Heating and Cooling Output Cycle Times 3

4.3. HOW TO TUNE ... 4
 4.3.1. Typical automatic tuning cycle 5
 4.3.2. Calculation of the cutback values 5

4.4. MANUAL TUNING ... 6
 4.4.1. Setting the cutback values .. 7
 4.4.2. Integrating action and manual reset 8
 4.4.3. Automatic droop compensation (Adc) 8
4.1. WHAT IS TUNING?

Before tuning please read Chapter 1, Operation, to learn how to select and change a parameter. In tuning you match the characteristics of the controller to that of the process being controlled in order to obtain good control. Good control means:

- Stable ‘straight-line’ control of the temperature at setpoint without fluctuation
- Acceptable overshoot or undershoot of the temperature setpoint
- Quick response to deviations from the setpoint caused by external disturbances, thereby restoring the temperature rapidly to the setpoint value.

Tuning involves calculating and setting the value of the parameters listed in Table 4-1. These parameters appear in the P, I, D list.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Code</th>
<th>Meaning or Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportional band</td>
<td>Pb</td>
<td>The bandwidth in display units over which the output power is proportioned between minimum and maximum.</td>
</tr>
<tr>
<td>Integral time</td>
<td>tI</td>
<td>Determines the time taken by the controller to remove steady-state error signals.</td>
</tr>
<tr>
<td>Derivative time</td>
<td>td</td>
<td>Determines how strongly the controller will react to the rate-of-change of the measured value.</td>
</tr>
<tr>
<td>Low cutback</td>
<td>Lcb</td>
<td>The number of display units below setpoint at which the controller will cutback the output power in order to prevent overshoot on heat up.</td>
</tr>
<tr>
<td>High Cutback</td>
<td>Hcb</td>
<td>The number of display units above setpoint at which the controller will increase the output power in order to prevent undershoot on cool down.</td>
</tr>
<tr>
<td>Relative cool gain</td>
<td>rELC</td>
<td>Only present if cooling has been configured. Sets the cooling proportional band by dividing the Pb value by the rEL.C value.</td>
</tr>
</tbody>
</table>

Table 4-1 Tuning parameters
4.2. AUTOMATIC TUNING

This method automatically determines the value of the parameters listed in table 4-1 on the previous page.

The 2216e uses a ‘one-shot’ tuner which works by switching the output on and off to induce an oscillation in the measured value. From the amplitude and period of the oscillation, it calculates the tuning parameter values.

If the process cannot tolerate full heating or cooling being applied during tuning, then the level of heating or cooling can be restricted by setting the heating and cooling power limits in the Output list. However, the measured value must oscillate to some degree for the tuner to be able to calculate values.

A One-shot Tune can be performed at any time but normally it is performed only once during the initial commissioning of the process. However, if the process under control subsequently becomes unstable (because its characteristics have changed), you can re-tune again for the new conditions.

It is best to start tuning with the process at ambient temperature. This allows the tuner to calculate more accurately the low cutback and high cutback values that restrict the amount of overshoot or undershoot.

4.2.1. Heating and Cooling Output Cycle Times

Before commencing a tuning cycle, set the values of H (heat cycle time) and L (cool cycle time) in the op (output list). These values apply if you are using a logic, relay or triac output. They have no effect on a DC output.

A logic output switching a solid state relay can be set to values such as 1 sec.
A relay or triac output should be set to 20 sec.
4.3. HOW TO TUNE

1. Set the setpoint to the value at which you will normally operate the process.
2. In the ‘Retun’ list, select ‘tune’ and set it to ‘on’.
3. Press the Page and Scroll buttons together to return to the Home display. The display will flash ‘tune’ to indicate that tuning is in progress.
4. The controller will induce an oscillation in the temperature by turning the heating on and then off. The first cycle will not complete until the measured value has reached the required setpoint.
5. After two cycles of oscillation the tuning will be completed and the tuner will switch itself off.
6. The controller will then calculate the tuning parameters listed in Table 4-1 and will resume normal control action.

If you want ‘Proportional only’ or ‘PD’ or ‘PI’ control, you should set the ‘ti’ or ‘td’ parameters to ‘off’ before commencing the tuning cycle. The tuner will leave them off and will not calculate a value for them.

For valve position tuning and set-up, please refer to Appendix D.
4.3.1. Typical automatic tuning cycle

4.3.2. Calculation of the cutback values

Low cutback and High cutback are values that restrict the amount of overshoot or undershoot that occur during large step changes in temperature (for example, under startup conditions).

If either low cutback or high cutback is set to ‘Auto’ the values will be fixed at three times the proportional band, and will not be changed during automatic tuning.
4.4. MANUAL TUNING

If for any reason automatic tuning gives unsatisfactory results, you can tune the controller manually. There are a number of standard methods for manual tuning. The one described here is the Ziegler-Nichols method.

With the process at its normal running temperature:

1. Set the Integral Time ti and the Derivative Time td to OFF.
2. Set High Cutback and Low Cutback, Hcb and Lcb, to Hcb.
3. Ignore the fact that the temperature may not settle precisely at the setpoint.
4. If the temperature is stable, reduce the proportional band Pb so that the temperature just starts to oscillate. If the temperature is already oscillating, increase the proportional band until it just stops oscillating. Allow enough time between each adjustment for the loop to stabilise. Make a note of the proportional band value B and the period of oscillation T.
5. Set the Pb, ti, td parameter values according to the calculations given in Table 4-2.

<table>
<thead>
<tr>
<th>Type of control</th>
<th>Proportional band ‘Pb’</th>
<th>Integral time ‘ti’</th>
<th>Derivative time ‘td’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportional only</td>
<td>2xB</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>P + I control</td>
<td>2.2xB</td>
<td>0.8xT</td>
<td>OFF</td>
</tr>
<tr>
<td>P + I + D control</td>
<td>1.7xB</td>
<td>0.5xT</td>
<td>0.12xT</td>
</tr>
</tbody>
</table>

Table 4-2 Tuning values
4.4.1. Setting the cutback values

The above procedure sets up the parameters for optimum steady state control. If unacceptable levels of overshoot or undershoot occur during start-up or for large step changes in temperature, then manually set the cutback parameters L_{cb} and H_{cb}.

Proceed as follows:

1. Set the low and high cutback values to three proportional bandwidths (that is to say, $L_{cb} = H_{cb} = 3 \times P_b$).
2. Note the level of overshoot or undershoot that occurs for large temperature changes (see the diagrams below).

In example (a) increase L_{cb} by the overshoot value. In example (b) reduce L_{cb} by the undershoot value.

Example (a)

Temperature

![Diagram](image)

Example (b)

Temperature

![Diagram](image)

Where the temperature approaches setpoint from above, you can set H_{cb} in a similar manner.
4.4.2. Integrating action and manual reset

In a full three-term controller (that is, a PID controller), the integral term ‘ti’ automatically removes steady state errors from the setpoint. If the controller is set up to work in two-term mode (that is, PD mode), the integral term will be set to OFF. Under these conditions the measured value may not settle precisely at setpoint. When the integral term is set to OFF the parameter manual reset (code rES) appears in the parameter list in the Full Access level. This parameter represents the value of the power output that will be delivered when the error is zero. You may set this value manually in order to remove the steady state error.

4.4.3. Automatic droop compensation (Adc)

The steady state error from the setpoint, which occurs when the integral term is set to OFF, is sometimes referred to as ‘droop’. Adc automatically calculates the manual reset value in order to remove this droop. To use this facility, you must first allow the temperature to stabilise. Then, in the autotune parameter list, you must set Adc to Operate. The controller will then calculate a new value for manual reset, and switch Adc to Manual.

Adc can be repeated as often as you require but between each adjustment you must allow time for the temperature to stabilise.
5. Chapter 5 CONFIGURATION

5. Chapter 5 CONFIGURATION .. 1

5.1 SELECTING CONFIGURATION LEVEL ... 2

5.2 SELECTING A CONFIGURATION PARAMETER 3

5.3 LEAVING CONFIGURATION LEVEL .. 3

5.4 STEPS INVOLVED IN CONFIGURING A CONTROLLER 3

5.5 NAVIGATION DIAGRAM (PART A) ... 4

5.6 NAVIGATION DIAGRAM (PART B) ... 5

5.7 CONFIGURATION PARAMETER TABLES 6

5.8 CONFIGURATION OF DIGITAL COMMUNICATIONS 14
 5.8.1. To Configure the Function and Baud Rate 14
 5.8.2. To Set the Instrument Address ... 15

5.9 DEVICENET ... 15
 5.9.1. The EDS File .. 15
 5.9.2. ODVA Compliance ... 15

WARNING

Configuration is protected by a password and should be carried out by an authorised person. Incorrect configuration could result in damage to the process being controlled and/or personal injury. It is the responsibility of the person commissioning the process to ensure that the configuration is correct.

Whenever the configuration level is accessed, all controller outputs are held in the power off state and control operation is suspended.
5.1 SELECTING CONFIGURATION LEVEL

Press Page button repeatedly until Access List appears.

1st press

2nd press

3rd press

4th press

Repeated pressing of “Page” button selects configuration list headings in a continuous loop.
5.2 SELECTING A CONFIGURATION PARAMETER

(continued from previous page)

Figure 5.2

5.3 LEAVING CONFIGURATION LEVEL

Figure 5.3

5.4 STEPS INVOLVED IN CONFIGURING A CONTROLLER

The navigation diagram which follows shows the general location of parameters which define the way in which the controller works. They are grouped under headings.

The actual parameters shown in your controller may differ slightly since some appear only as a result of selecting others. A full list of possibilities is included in the PARAMETER TABLES which follow the navigation diagram.
5.5 NAVIGATION DIAGRAM (PART A)

SUMMARY

Step through List Headers
using the 'Page' button

Choose a parameter from a list
using the 'Scroll' button

Change value
using the 'Raise/Lower' buttons

The first four headings set up the controller functions, as follows:

Instrument Config. - Groups those parameters associated with the display and control action

Input Config. - selects the input sensor type

User cal Config. - to calibrate to external reference sources

Alarms Config. - sets up the alarm types

Fig 5.4a Navigation Diagram (Part A)
5.6 NAVIGATION DIAGRAM (PART B)

The first four headings set up the controller functions as follows:

- **i nSt ConF** Sets up display and control parameters
- **i P ConF** Selects the input sensor type
- **CAL ConF** To calibrate to external reference sources
- **AL ConF** Sets up the alarm types

The upper readout corresponds to rear terminal numbers associated with a particular i/o

<table>
<thead>
<tr>
<th>Heading</th>
<th>Input/Output Functions</th>
<th>Wiring Terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA ConF</td>
<td>Sets up digital comms. type</td>
<td>HA to HF</td>
</tr>
<tr>
<td>IA ConF</td>
<td>Sets up the output 1 module</td>
<td>1A & 1B</td>
</tr>
<tr>
<td>2A ConF</td>
<td>Sets up the output 2 module</td>
<td>2A & 2B</td>
</tr>
<tr>
<td>3A ConF</td>
<td>Sets up the action of the relay on output 4</td>
<td>3A to 3C</td>
</tr>
<tr>
<td>PASS ConF</td>
<td>To choose new passwords</td>
<td></td>
</tr>
<tr>
<td>Ex i t ConF</td>
<td>To leave configuration level and return to operator level</td>
<td></td>
</tr>
</tbody>
</table>

Output 3 is the fixed, normally open relay output.
5.7 CONFIGURATION PARAMETER TABLES

<table>
<thead>
<tr>
<th>Name</th>
<th>Parameter description</th>
<th>Values</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uni</td>
<td>Instrument units</td>
<td>C, F, K</td>
<td>Centigrade (default UK), Fahrenheit (default USA), Kelvin</td>
</tr>
<tr>
<td>dEcP</td>
<td>Decimal places in the displayed value</td>
<td>None, One, Two</td>
<td>Display units will be blanked</td>
</tr>
<tr>
<td>Ctrl</td>
<td>Control type</td>
<td>On/Off, PID control</td>
<td>On/off control, PID control</td>
</tr>
<tr>
<td>Act</td>
<td>Control action</td>
<td>Reverse acting, Direct acting</td>
<td>Reverse acting (required for temperature control) - output decreases on approach to setpoint, Direct acting</td>
</tr>
<tr>
<td>cool</td>
<td>Type of cooling</td>
<td>Linear, Oil, Water, Fan</td>
<td>Linear, Oil (50mS min on time), Water (non-linear), Fan (0.5S min on time)</td>
</tr>
<tr>
<td>PwrF</td>
<td>Power feedback</td>
<td>On, Off</td>
<td>Power feedback is on, Power feedback is off</td>
</tr>
<tr>
<td>Pdtr</td>
<td>Bumpless Manual/Auto transfer when using PD control</td>
<td>Non-bumpless transfer, Bumpless transfer (auto to manual and manual to auto)</td>
<td>Non-bumpless transfer, Bumpless transfer (auto to manual and manual to auto)</td>
</tr>
<tr>
<td>FoP</td>
<td>Forced manual output</td>
<td>Non-bumpless transfer, Bumpless transfer (auto to manual and manual to auto)</td>
<td>Non-bumpless transfer, Bumpless transfer (auto to manual and manual to auto)</td>
</tr>
<tr>
<td>Sbr</td>
<td>Sensor break output</td>
<td>Go to pre-set value (maintains output at a known, safe level), Freeze output (maintains output at value immediately before break)</td>
<td>Go to pre-set value (maintains output at a known, safe level), Freeze output (maintains output at value immediately before break)</td>
</tr>
<tr>
<td>LCH</td>
<td>Load current scaling factor</td>
<td>100</td>
<td>See Chapter 9</td>
</tr>
</tbody>
</table>

Factory default parameter values and states are included where applicable and are indicated by the shaded areas in the following tables.
<table>
<thead>
<tr>
<th>Name</th>
<th>Parameter description</th>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>iPl</td>
<td>Input configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iPl</td>
<td>Input type</td>
<td>J / Jc</td>
<td>J thermocouple (default USA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K / Kc</td>
<td>K thermocouple (default UK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L / Lc</td>
<td>L thermocouple</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R / Rc</td>
<td>R thermocouple (Pt/Pt13%Rh)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B / Bc</td>
<td>B thermocouple (Pt30%Rh/Pt6%Rh)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N / Nc</td>
<td>N thermocouple</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T / Tc</td>
<td>T thermocouple</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S / Sc</td>
<td>S thermocouple (Pt/Pt10%Rh)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL2</td>
<td>PL 2 thermocouple</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rtd</td>
<td>100Ω platinum resistance thermometer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Custom downloaded input type. The default is C thermocouple, or the name of the downloaded custom input will be displayed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mV</td>
<td>Linear millivolt (Also mA input via an external 2.49Ω current sense resistor)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Linear voltage</td>
</tr>
<tr>
<td>iPl</td>
<td>Input range low</td>
<td></td>
<td>Display low range for input</td>
</tr>
<tr>
<td>iPl</td>
<td>Input range high</td>
<td></td>
<td>Display high range for input</td>
</tr>
<tr>
<td>CJC</td>
<td>CJC ref. temperature</td>
<td></td>
<td>Automatic cold junction compensation</td>
</tr>
<tr>
<td></td>
<td>(CJC does not appear for linear inputs)</td>
<td></td>
<td>0°C external reference</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45°C</td>
<td>45°C external reference</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50°C</td>
<td>50°C external reference</td>
</tr>
<tr>
<td>iPl</td>
<td>Linear Input Scaling</td>
<td></td>
<td>The next 4 parameters only appear if a linear input is chosen</td>
</tr>
<tr>
<td></td>
<td>Displayed Value</td>
<td></td>
<td>Input value low</td>
</tr>
<tr>
<td>UALL</td>
<td></td>
<td></td>
<td>Input value high</td>
</tr>
<tr>
<td>UAH</td>
<td></td>
<td></td>
<td>Displayed reading low</td>
</tr>
<tr>
<td>UAL</td>
<td></td>
<td></td>
<td>Displayed reading high</td>
</tr>
<tr>
<td></td>
<td>Electrical Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iPl</td>
<td>Sensor break input impedence trip level</td>
<td>OFF</td>
<td>Sensor break detection is disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Appears for mV or V inputs only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trip level set by the sensor input table</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trip level set at 7.5KΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trip level set at 15KΩ (must be selected when UoL = input is enabled)</td>
</tr>
<tr>
<td>Name</td>
<td>Parameter description</td>
<td>Value</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>CAL</td>
<td>User calibration config.</td>
<td></td>
<td>See Chapter 6 - User calibration</td>
</tr>
<tr>
<td>PdL</td>
<td>User cal enable</td>
<td>no</td>
<td>User calibration is disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YES</td>
<td>User calibration is enabled</td>
</tr>
<tr>
<td>PntL</td>
<td>User calibration point low</td>
<td>0</td>
<td>This is the value (in display units) at which a User last performed a low point calibration</td>
</tr>
<tr>
<td>PntH</td>
<td>User calibration point high</td>
<td>100</td>
<td>This is the value (in display units) at which a User last performed a high point calibration</td>
</tr>
<tr>
<td>OFSL</td>
<td>Low point calibration offset</td>
<td>0</td>
<td>Offset, in display units, at the user low calibration point 'Pnt.L'. This value is automatically calculated when performing low point calibration.</td>
</tr>
<tr>
<td>OFSH</td>
<td>High point calibration offset</td>
<td>0</td>
<td>Offset, in display units, at the user high calibration point 'Pnt.H'. This value is automatically calculated when performing a high point calibration.</td>
</tr>
</tbody>
</table>

*If User calibration is enabled, then the User calibration parameters will appear in the Input list of Operator Full access level. See Chapter 6, *User calibration*.

Alarm Configuration

<table>
<thead>
<tr>
<th>Name</th>
<th>Parameter description</th>
<th>Values</th>
<th>Defaults if not specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL 1</td>
<td>Alarm 1 Type</td>
<td>As table A</td>
<td>OFF</td>
</tr>
<tr>
<td>bLoc</td>
<td>Alarm 1 Blocking(1)</td>
<td>na*, YES</td>
<td>na</td>
</tr>
<tr>
<td>lLoc</td>
<td>Alarm 1 Latching</td>
<td>na*, YES</td>
<td>na</td>
</tr>
<tr>
<td>RL 2</td>
<td>Alarm 2 Type</td>
<td>As table A</td>
<td>OFF</td>
</tr>
<tr>
<td>bLoc</td>
<td>Alarm 2 Blocking(1)</td>
<td>na*, YES</td>
<td>na</td>
</tr>
<tr>
<td>lLoc</td>
<td>Alarm 2 Latching</td>
<td>na*, YES</td>
<td>na</td>
</tr>
<tr>
<td>RL 3</td>
<td>Alarm 3 Type</td>
<td>As table A</td>
<td>OFF</td>
</tr>
<tr>
<td>bLoc</td>
<td>Alarm 3 Blocking(1)</td>
<td>na*, YES</td>
<td>na</td>
</tr>
<tr>
<td>lLoc</td>
<td>Alarm 3 Latching</td>
<td>na*, YES</td>
<td>na</td>
</tr>
<tr>
<td>RL 4</td>
<td>Alarm 4 Type</td>
<td>As table A</td>
<td>OFF</td>
</tr>
<tr>
<td>bLoc</td>
<td>Alarm 4 Blocking(1)</td>
<td>na*, YES</td>
<td>na</td>
</tr>
<tr>
<td>lLoc</td>
<td>Alarm 4 Latching</td>
<td>na*, YES</td>
<td>na</td>
</tr>
</tbody>
</table>

Table A: Alarm types

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>No alarm</td>
</tr>
<tr>
<td>FSL</td>
<td>Full scale low</td>
</tr>
<tr>
<td>FSH</td>
<td>Full scale high</td>
</tr>
<tr>
<td>dEv</td>
<td>Deviation band</td>
</tr>
<tr>
<td>dH</td>
<td>Deviation high</td>
</tr>
<tr>
<td>dLo</td>
<td>Deviation low</td>
</tr>
<tr>
<td>Lcr</td>
<td>Low current</td>
</tr>
<tr>
<td>Hcr</td>
<td>High current</td>
</tr>
</tbody>
</table>

(1) Blocking allows the alarm to become active only after it has first entered a safe state.

These are ‘soft’ alarms i.e. Indication only. They would normally be attached to an output. See Chapter 7 for a step by step guide.
<table>
<thead>
<tr>
<th>Name</th>
<th>Parameter description</th>
<th>Functions</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1d</td>
<td>Identity of the option installed</td>
<td>/G23/G15/G23/G15</td>
<td>EIA 485 comms module</td>
</tr>
<tr>
<td>Func</td>
<td>Function</td>
<td>/G4F/G1B</td>
<td>PDS setpoint input</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/G30/G1C/G10/G44/G4F</td>
<td>Modbus protocol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/G1A/G2C/G10</td>
<td>EIA 485 comms module</td>
</tr>
<tr>
<td>URL</td>
<td>PDS displayed value low</td>
<td>Range = -999 to 9999</td>
<td></td>
</tr>
<tr>
<td>URL</td>
<td>PDS displayed value high</td>
<td>Range = -999 to 9999</td>
<td></td>
</tr>
<tr>
<td>bAud</td>
<td>Baud Rate</td>
<td>1200, 2400, 4800, 9600, 19200 (19200)</td>
<td></td>
</tr>
<tr>
<td>PttY</td>
<td>Comms Parity</td>
<td>nonE</td>
<td>No parity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EEn</td>
<td>Even parity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>odd</td>
<td>Odd parity</td>
</tr>
<tr>
<td>rEn</td>
<td>Comms Resolution</td>
<td>Full</td>
<td>Full resolution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int</td>
<td>Integer resolution</td>
</tr>
</tbody>
</table>

* Not used with some communication protocols. Please consult factory.
<table>
<thead>
<tr>
<th>Name</th>
<th>Parameter description</th>
<th>Function</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>iA</td>
<td>Output 1 configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iD</td>
<td>Identity of module installed</td>
<td></td>
<td>No module fitted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nanE</td>
<td>Relay output</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rELY</td>
<td>DC output (isolated)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aCOP</td>
<td>Logic or PDS output</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LoG</td>
<td>Triac output</td>
</tr>
<tr>
<td>Func</td>
<td>Function</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>nanE</td>
<td>Function set by dGF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dH</td>
<td>Heating output</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COOL</td>
<td>Cooling output</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OP</td>
<td>Retransmission of output demand</td>
</tr>
<tr>
<td></td>
<td>Only appear for i d = aCOP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Only appear for i d = aCOP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Only appear for i d = aCOP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Only appear for i d = aCOP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sens</td>
<td>Sense of output</td>
<td>nor</td>
<td>Normal (e.g. heating and cooling)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inv</td>
<td>Inverted (alarms - de-energise in alarm)</td>
</tr>
<tr>
<td>DC output scaling</td>
<td>For i d = aCOP</td>
<td>the following parameters appear</td>
<td></td>
</tr>
<tr>
<td>QUL</td>
<td>DC output minimum</td>
<td>0mA to QUL</td>
<td></td>
</tr>
<tr>
<td>QUL'</td>
<td>DC output maximum</td>
<td>QUL' to 20mA</td>
<td></td>
</tr>
</tbody>
</table>
Table B

The following parameters appear if `/G1B/G4E/G21` is chosen as the function.

<table>
<thead>
<tr>
<th>Digital output functions</th>
<th>No change</th>
<th>Clear all existing functions</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/G1B/G4F/G21/G44/G1F</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>/G2E/G2F/G44/G1A/G23</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>/G09/G42/G42/G42</code></td>
<td></td>
<td><code>Alarm 1*</code></td>
</tr>
<tr>
<td><code>/G0A/G42/G42/G42</code></td>
<td></td>
<td><code>Alarm 2*</code></td>
</tr>
<tr>
<td><code>/G0D/G42/G42/G42</code></td>
<td></td>
<td><code>Alarm 3*</code></td>
</tr>
<tr>
<td><code>/G0E/G42/G42/G42</code></td>
<td></td>
<td><code>Alarm 4*</code></td>
</tr>
<tr>
<td><code>/G2C/G15/G2E</code></td>
<td>Manual/Auto</td>
<td></td>
</tr>
<tr>
<td><code>/G29/G17/G35</code></td>
<td>Loop break</td>
<td></td>
</tr>
<tr>
<td><code>/G23/G36/G35/G1F</code></td>
<td>PDS Heater fail</td>
<td></td>
</tr>
<tr>
<td><code>/G29/G1B/G1F</code></td>
<td>PDS Load failure</td>
<td></td>
</tr>
<tr>
<td><code>/G1D/G2E/G1B</code></td>
<td>End of program</td>
<td></td>
</tr>
<tr>
<td><code>/G10/G30/G15/G2E</code></td>
<td>PV out of range</td>
<td></td>
</tr>
<tr>
<td><code>/G10/G10/G35/G1F</code></td>
<td>PDS Solid state relay failure</td>
<td></td>
</tr>
<tr>
<td><code>/G2E/G3D/G15/G29</code></td>
<td>New alarm</td>
<td></td>
</tr>
<tr>
<td><code>/G35/G2C/G36/G1F</code></td>
<td>Remote setpoint failure</td>
<td></td>
</tr>
</tbody>
</table>

*In place of the dashes, the last three characters indicate the alarm type as per table A in the AL list: eg `/G09/G1F/G10/G29` = Full Scale Low

If an alarm is not configured the displayed name will differ: e.g. `/G09` will be shown, for the first alarm
<table>
<thead>
<tr>
<th>Name</th>
<th>Parameter description</th>
<th>Function</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>i d</td>
<td>Output 2 configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Identity of module installed</td>
<td>nonE, rELy, LoG, SS-</td>
<td>No module fitted, Relay output, Logic output, Triac output</td>
</tr>
<tr>
<td></td>
<td>Function</td>
<td>none</td>
<td>Function set by</td>
</tr>
<tr>
<td></td>
<td>Outputs</td>
<td>dG, HERl, COOL</td>
<td>Heating output, Cooling output</td>
</tr>
<tr>
<td></td>
<td>Logic inputs</td>
<td>mAn, rAt, SP, 2, t: H, Rc, RL, Loc b, rSEt, SEbY</td>
<td>Manual mode select, Remote setpoint select, Setpoint 2 select, Integral hold, Acknowledge alarms, Lock buttons (keypad), Ramp/dwell reset, Standby - ALL outputs = OFF</td>
</tr>
</tbody>
</table>

For **Func = dG** go to table B on previous page

<table>
<thead>
<tr>
<th>Sens</th>
<th>Sense of output</th>
<th>nor</th>
<th>inu</th>
<th>Normal (heat and cool outputs)</th>
<th>Inverted (alarms - de-energise in alarm)</th>
</tr>
</thead>
</table>

| **Arr** | Output 3 configuration | As per output AA configuration |

<table>
<thead>
<tr>
<th>Pss</th>
<th>Password list</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReFp</td>
<td>FULL or Ed: E level password (default = 1)</td>
</tr>
<tr>
<td>cnFP</td>
<td>Configuration level Password (default = 2)</td>
</tr>
</tbody>
</table>

| **EXIT** | Exit Configuration | no | YES |
5.8 CONFIGURATION OF DIGITAL COMMUNICATIONS

The 2216 controller can be fitted with the following digital communications modules:-

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Module Fitted</th>
<th>Order Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ModBus</td>
<td>2-wire RS485</td>
<td>2YM</td>
</tr>
<tr>
<td></td>
<td>4-wire RS422</td>
<td>2FM</td>
</tr>
<tr>
<td></td>
<td>RS232</td>
<td>2AM</td>
</tr>
<tr>
<td>EI-Bisynch</td>
<td>2-wire RS485</td>
<td>2YE</td>
</tr>
<tr>
<td></td>
<td>4-wire RS422</td>
<td>2FE</td>
</tr>
<tr>
<td></td>
<td>RS232</td>
<td>2AE</td>
</tr>
<tr>
<td>DeviceNet</td>
<td></td>
<td>2DN</td>
</tr>
</tbody>
</table>

5.8.1 To Configure the Function, and Baud Rate

All devices on a network must have the same Baud Rate, Parity and Resolution.

Comms configuration list - H

Identity of module
This is a read-only parameter displaying the identity of the module fitted

Function
Set `Func = Cn5` to select the protocol. Ensure that the correct Comms module has been fitted. To disable comms set `Func` to None.

Baud Rate
Press `▲` or `▼` to set the Baud Rate. The choices are:
1200, 2400, 4800, 9600, 19200 for Modbus and EI-Bisynch
125(K), 250(K), or 500(K) for DeviceNet

Parity and Resolution can be set by the same procedure. These will normally be set to None and Full respectively.
5.8.2 To Set Instrument Address

All devices on a network must have a different node address.

Instrument address is set in operator level.

Exit configuration level. This is described on page 5-3.

<table>
<thead>
<tr>
<th>Comms list</th>
</tr>
</thead>
<tbody>
<tr>
<td>From the HOME display, press the Page button until you reach the \textit{cm5} list</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Press the raise or lower buttons until the desired address is set. The choices are:</td>
</tr>
<tr>
<td>0 to 99 for Modbus and EI-Bisynch</td>
</tr>
<tr>
<td>0 to 64 for DeviceNet</td>
</tr>
</tbody>
</table>

5.9 DEVIĆENET

The following is applicable to DeviceNet only.

5.9.1 The EDS File

The EDS (Electronic Data Sheet) file for the Series 2200e is named 2K2DN.EDS and is available from your supplier, or electronically by going to Web site (www.eurotherm.com). The EDS file is designed to automate the DeviceNet network configuration process by precisely defining vendor-specific and required device parameter information. Following a data sheet metaphor, the EDS file describes a device’s configurable parameters, including its legal and default values and the public interfaces to those parameters. Software configuration tools utilize the EDS files to configure a DeviceNet network.

5.9.2 ODVA Compliance

This interface has been tested to comply with the full requirements of the ODVA (Open DeviceNet Vendors Association) conformity tests.
6 Chapter 6 USER CALIBRATION

6.8 WHAT IS THE PURPOSE OF USER CALIBRATION? 2
6.9 USER CALIBRATION ENABLE .. 3
6.10 SINGLE POINT CALIBRATION ... 4
6.11 TWO POINT CALIBRATION ... 5
6.12 CALIBRATION POINTS AND CALIBRATION OFFSETS 6
6.8 WHAT IS THE PURPOSE OF USER CALIBRATION?

The basic calibration of the controller is highly stable and set for life. User calibration allows you to offset the 'permanent' factory calibration to either:

1. Calibrate the controller to your reference standards
2. Match the calibration of the controller to that of a particular transducer or sensor input
3. Calibrate the controller to suit the characteristics of a particular installation.

User calibration works by introducing zero and span offsets onto the factory set calibration. The factory set calibration can always be retrieved.

To understand how to select and change parameters in this chapter you will need to have read Chapter 2 - Operation, Chapter 3 - Access Levels and Chapter 5 - Configuration.
6.9 USER CALIBRATION ENABLE

The User calibration facility must first be enabled in configuration level by setting the parameter 'Adj' in the CAL conf list to 'YES'. This will make the User calibration parameters appear in Operator 'FULL' level.

Select configuration level as shown in Chapter 5, Configuration

The User calibration configuration List

Press \(\) until you reach the CAL conf list

Press the Scroll button until you reach

User calibration enable

Use \(\) or \(\) to select:

YES: Calibration enable
nO: Calibration disabled

Press \(\) and \(\) together to go to the Exit display

Exit configuration

Use \(\) or \(\) to select 'YES', and return to Operator level.
6.10 SINGLE POINT CALIBRATION

Your controller is calibrated for life against known reference sources during manufacture. A calibration offset is often used to allow the controller to compensate for sensor and other system errors. The normal procedure is to set up the system under test against a known independent reference, as follows:

Set up the process to be calibrated such that the known reference displays the required value (temperature).

Observe the reading on the controller. If it is different, proceed as follows:

Select **Full** Access level as described in Chapter 3

Input list header

Press \[\] until you reach the input list header.

Press Scroll until you reach the **CAL** display

Calibration type

Use \[\] or \[\] to select either **FACT** or **USER**.

Selecting **FACT** will reinstate the factory calibration and hide the following User calibration parameters.

Selecting **USER** will reinstate any previously set User calibration and make available the User parameters, as follows:

Press the Scroll button

Calibrate low point?

Use \[\] or \[\] to select **YES**.

Selecting ‘no’ will hide the next parameter

Press the Scroll button

continued on the next page
6.11 TWO POINT CALIBRATION

The previous section described how to perform a single point calibration which applies a fixed offset over the full display range of the controller. A two-point calibration is used to calibrate the controller at two points and apply a straight line between them. Any readings above or below the two calibration points will be an extension of this straight line. For this reason it is best to calibrate with the two points as far apart as possible.

Proceed as follows:
1. Decide upon the low and high points at which you wish to calibrate.
2. Perform a single point calibration at the low calibration point in the manner described above.
3. Set the process under calibration such that the known reference exhibits the required higher Process Value (temperature) and allow to stabilise.
4. Press the Scroll button to obtain the high calibration point as shown in the following diagrams.

Adjust the low point calibration

The controller will display the current measured input value in the lower readout.

Use or to adjust the reading to the reference source value, if different.

After a two second delay the display will blink and the reading will change to the new, calibrated value. You can calibrate at any point over the entire display range.

This is a single point calibration which applies a fixed offset over the full display range of the controller.

The calibration is now complete. You can return to the factory calibration at any time by select 'FACTORY' in the CAL display shown earlier.

Press and together to return to the Home display

To protect the calibration against unauthorised adjustment return to Operator level and make sure that the calibration parameters are hidden. Parameters are hidden using the 'EDIT' facility describe in Chapter 3.
Calibrate high point?

Use \(\uparrow \) or \(\downarrow \) to select \(H \).

Press the Scroll button

Adjust the high point calibration

The controller will display the current measured input value in the lower readout.

Use \(\uparrow \) or \(\downarrow \) to adjust the reading to the reference source value, if different. After a two second delay the display will blink and the reading will change to the new, calibrated value.

The calibration is now complete. You can return to the factory calibration at any time by select \(F A C E \) in the \(C A L \) display shown earlier.

Press \(\circ \) and \(\square \) together to return to the Home display

To protect the calibration against unauthorised adjustment return to Operator level and make sure that the calibration parameters are hidden. Parameters are hidden using the \(E d \) facility described in Chapter 3.

6.12 CALIBRATION POINTS AND CALIBRATION OFFSETS

If you wish to see the points at which the User calibration was performed and the value of the offsets introduced these are shown in Configuration, under \(C A L \) \(C o n f \). The parameters are:

<table>
<thead>
<tr>
<th>Name</th>
<th>Parameter description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lh</td>
<td>User low calibration point</td>
<td>This is the value (in display units) at which a User last performed an (H d L) (adjust low calibration).</td>
</tr>
<tr>
<td>Hh</td>
<td>User high calibration point</td>
<td>This is the value (in display units) at which a User last performed an (H d H) (adjust high calibration).</td>
</tr>
<tr>
<td>Lofs</td>
<td>Low point calibration offset</td>
<td>Offset, in display units, at the user low calibration point (L h).</td>
</tr>
<tr>
<td>Hofs</td>
<td>High point calibration offset</td>
<td>Offset, in display units, at the user high calibration point (H h).</td>
</tr>
</tbody>
</table>
Chapter 7 ALARM CONFIGURATION

7.1 DEFINITION OF ALARMS AND EVENTS
7.1.1 Types Of Alarms
7.2 DIGITAL OUTPUT FUNCTIONS
7.3 STEP1 - CONFIGURING THE FOUR ‘SOFT’ ALARMS
7.4 STEP 2 - ATTACHING AN ALARM TO A PHYSICAL OUTPUT
7.5 STEP 3 - GROUPING ALARMS ON A SINGLE OUTPUT
7.6 STEP 4 - REMOVING ALARMS FROM AN OUTPUT

The 2200e series controllers are capable of very sophisticated alarm strategies and, although setting up of alarms has already been covered in previous chapters, this section has been included to enable operators and commissioning engineers to design their own strategies for optimum plant operation.
7.1 DEFINITION OF ALARMS AND EVENTS

See also section 1.11 for further information on Alarms.

Alarms are used to alert an operator when a pre-set level or condition has been exceeded. They are normally used to switch an output - usually a relay - to provide interlocking of the machine or plant or external audio or visual indication of the condition.

Soft Alarms are indication only within the controller and are not attached to an output (relay).

Events - can also be alarms - but are generally defined as conditions which occur as part of the normal operation of the process. They do not generally require operator intervention.

Events are also referred to as **Digital Output Functions** (see Table B, page 5-12).

For the purposes of the operation of this instrument alarms and events can be considered the same.

7.1.1 Types Of Alarms

The use of alarms in the 2216e controller is extremely versatile. Up to 4 alarms can be configured. Any combination of these 4 alarms can be attached to any one or more outputs, or any number of the available “soft” alarms can be combined to operate a single output.

⚠️ Note: In a three term controller at least one of these outputs is used to maintain the required temperature of the process.

- **Outputs 1A and 2A**
 - Are plug in modules.
 - Normally used for control outputs, eg. Heat and Cool, but can be used for alarm outputs.

- **Output 3A**
 - Is a fixed relay.
 - Normally used for alarms or events, but can be used as control outputs.
There are seven process alarm types listed below. Alarm Types are found in configuration mode under the Alarm Config. List.

ALARMS

- **Full Scale High**: The PV exceeds a set high level
- **Full Scale Low**: The PV exceeds a set low level
- **Deviation Band**: The difference between PV & SP is outside a set band
- **Deviation High**: The difference between PV & SP is higher than a set level
- **Deviation Low**: The difference between PV & SP is lower than a set level
- **High Current**: The measured current returned from a PDS slave is higher than a set level. See also Chapter 9.
- **Low Current**: The measured current returned from a PDS slave is lower than a set level. See also Chapter 9.

Each **alarm** can be set to:

- **Latching**: Alarm is indicated until acknowledged
 - **Auto Acknowledge**: (Latch Auto)
 - If the alarm is acknowledged while the alarm condition is still present, it will cause the alarm to reset as soon as the alarm condition is removed.
 - **Manual Acknowledge**: (Latch MAN)
 - If the alarm is acknowledged while the alarm condition is still present, it will be ignored. A further acknowledgement is required when the alarm condition has been removed to cause the alarm to reset.

- **Blocking**: Alarm occurs after it has been through a start up phase not in alarm condition.

- **Sense Of Output**: Relay energised or de-energised in alarm condition. See also sections 1-12 and 7.4.

- **Soft Alarms**: Indication only and do not operate an output.

See also Section 1.11 for further information on alarm types.
7.2 DIGITAL OUTPUT FUNCTIONS

In addition there are nine “digital output functions” used as events or alarms depending upon the requirements of the process under control:

- **Sensor Break**: The input is open circuit
- **Loop Break**: The controller does not measure a response to an output change
- **Load Failure**: Used with PDS Mode 1 load failure. See also Chapter 9.
- **Manual**: Controller in manual mode
- **PV Out Of Range**: Process Variable too high or too low
- **Remote SP Fail**: No signal measured at the remote set point input terminals
- **Heater Fail**: Used with PDS Mode 2 heater open circuit. See also Chapter 9.
- **SSR Fail**: Used with PDS Mode 2 solid state relay open or short circuit. See also Chapter 9.
- **Program END**: Signals the end of a program
- **New Alarm**: Signals a new alarm

⚠️ The **Sense of the Output** can be set to relay energised or de-energised in the alarm condition for any of the above functions.
7.3 STEP 1 - CONFIGURING THE FOUR ‘SOFT’ ALARMS

Soft alarms are indication only and do not operate a relay.

Go To Configuration Level
Refer to Chapter 5

Press “PAGE” key \(\uparrow\) as many times as necessary to find Alarm Configuration

Press “SCROLL” key \(\uparrow\) to the alarm which needs to be configured

Press “SCROLL” key \(\uparrow\) to choose alarm 1 latching or non-latching

Press “SCROLL” key \(\uparrow\) to choose alarm 1 blocking

Press “SCROLL” key \(\uparrow\) to repeat for alarms 2 - 4 to return to list header

Alarm Type choices are

- OFF
- FSL Full Scale Low
- FSH Full Scale High
- dEu deviation Band
- dH deviation High
- dLo deviation Low
- Lcr Low current
- Hcr High current

Choices No/Auto/Man
Press \(\uparrow\)

Choices Yes/No
press \(\uparrow\)

Figure 7.1
7.4 STEP 2 - ATTACHING AN ALARM TO A PHYSICAL OUTPUT

This may be necessary if:
1. The instrument has been supplied un-configured or it is required to re-configure
2. Alarm relays are added

Press “PAGE” key as many times as necessary to find **AA Configuration**

Press “SCROLL” key to identification of output type (this is read only)

Press “SCROLL” key to output Function

Press “SCROLL” key to digital output function

Use or buttons to select:
1. inverted (relay de-energised in alarm)
2. direct (relay energised in alarm)

Figure 7.2

Keep pressing “SCROLL” button to return to list header
7.5 STEP 3 - GROUPING ALARMS ON A SINGLE OUTPUT

In the previous example one alarm condition is allocated to one output relay.

The 2216e controller allows alarms and events to be grouped on to a single output. These events are shown in the table below.

<table>
<thead>
<tr>
<th>No change</th>
<th>Clear all existing functions</th>
<th>Alarm 1*</th>
<th>Alarm 2*</th>
<th>Alarm 3*</th>
<th>Alarm 4*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - - - -</td>
<td></td>
<td>1 - - - -</td>
<td>2 - - -</td>
<td>3 - - -</td>
<td>4 - - -</td>
</tr>
</tbody>
</table>

* See Table B page 5-12

See also section 1.12 for further information on alarm grouping.

Figure 7.3

7.6 STEP 4 - REMOVING ALARMS FROM AN OUTPUT

Each time you scroll through the table of alarms, note that 2 decimal points appear confirming acceptance that the particular alarm has been attached to the output, i.e., 3FSH, Sbr, etc.

Press \(\Delta \) once to show clear. After 2 sec, the lower readout reverts to no change clearing all events from the chosen output.

Figure 7.4
8. Chapter 8 MOTORISED VALVE CONTROL

8. Chapter 8 MOTORISED VALVE CONTROL1

8.1. PARAMETERS FOR MOTORISED VALVE CONTROL 2

8.2. COMMISSIONING THE MOTORISED VALVE CONTROLLER 2

8.2.1. Adjusting the minimum on-time On H ... 2

8.3. MOTORISED VALVE APPLICATIONS ... 3

8.3.1. Auto Tuning .. 3

8.3.2. Valve Positioner Set-up Table... 3
8.1. PARAMETERS FOR MOTORISED VALVE CONTROL

The 2216e can be configured for motorised valve control as an alternative to the standard PID control algorithm. This algorithm is designed specifically for positioning motorised valves.

The motorised valve algorithm operates in the Velocity mode, which does not require a position feedback potentiometer for control purposes.

The following parameter list will appear in the navigation diagram shown in Chapter 1; if your controller is configured for motorised valve control.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_r)</td>
<td>Valve travel time in seconds. This is the time taken for the valve to travel from its fully closed position to its fully open position.</td>
<td>0.0</td>
</tr>
<tr>
<td>(DPL_L)</td>
<td>(DPL_L) is the low output power limit.</td>
<td>-100.0</td>
</tr>
<tr>
<td>(DP_H)</td>
<td>(DP_H) is the High output power limit</td>
<td>-100.0</td>
</tr>
<tr>
<td>(OPL_H)</td>
<td>Output pulse minimum on time, in seconds.</td>
<td>Auto</td>
</tr>
</tbody>
</table>

Table 8-1 Motorised valve parameter list

8.2. COMMISSIONING THE MOTORISED VALVE CONTROLLER

Proceed as follows:

1. Measure the time taken for the valve to be raised from its fully closed to its fully open position and enter this as the value in seconds into the \(t_r\) parameter.
2. Set all the other parameters to the default values shown in Table 8-1.

The controller can then be tuned using the automatic or manual tuning techniques.

8.2.1. Adjusting the minimum on-time \(OPL_H\)

The default value of 0.2 seconds is satisfactory for most processes. The minimum on time determines how accurately the valve can be positioned. The shorter the time, the more precise the control. However, if the time is set too short, process noise will cause an excessively busy valve.
8.3. MOTORISED VALVE APPLICATIONS

8.3.1. Auto Tuning

Before the auto tune is activated, the \(t_d \) parameter must be set to a numeric value. The \(t_d \) parameter cannot be set to \textit{OFF} when an auto tune is activated. When the auto tune is complete, the auto tune will set the \(t_d \) parameter back to the \textit{OFF} position.

8.3.2. Valve Positioner Set-up Table

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Con)</td>
<td>Configuration Mode</td>
<td></td>
</tr>
<tr>
<td>(Ctr)</td>
<td>In the (\text{In}) configuration list set the (CtrL) to (uP).</td>
<td>(uP)</td>
</tr>
<tr>
<td>(1A)</td>
<td>Module 1A (t_d) needs to be a \textit{FLY} or a \textit{55'}. The (Func) for 1A should be configured for \textit{HERAT}. (Open Valve)</td>
<td>\textit{HERAT}</td>
</tr>
<tr>
<td>(2A)</td>
<td>Module 2A (t_d) needs to be a \textit{FLY} or a \textit{55'}. The (Func) for 2A should be configured for \textit{COOL}. (Close Valve)</td>
<td>\textit{COOL}</td>
</tr>
</tbody>
</table>

\(OPer \)	Operating Mode (OP List)	
\(mTr \)	Valve travel time in seconds. This is the time taken for the valve to travel from its fully closed position to its fully open position.	30.0
\(OPLo \)	Low output power limit.	-1000
\(OPHi \)	High output power limit	1000
\(OnH \)	Output pulse minimum on-time, in seconds.	0.2
\(HLog \)	Home List	
\(UPoS \)	Calculated position of valve	% of motor travel time

Table 8.2 Valve Positioner Set-up Table

⚠️ The following operating parameters do not effect the 2200e when the valve positioner option has been configured:
- \(\text{CYCLH} \) Heat Cycle Time
- \(\text{CYCLC} \) Cool Cycle Time
- \(\text{OnH} \) Minimum on time for cooling
Chapter 9 LOAD CURRENT MONITORING AND DIAGNOSTICS

9.1 LOAD CURRENT MONITORING AND DIAGNOSTICS2
9.2 EXAMPLE WIRING DIAGRAM (MODE 1 & 2 OPERATION)3
9.3 OPERATION ..4
 To Read Load Current (mode 2 only)...4
 9.3.2 To Display Load Current Continuously in the Lower Readout (mode 2
 only) 4
 9.3.3 Display Modes ..4
 9.3.4 How Heater Alarms Are Displayed ..5
9.4 TO SET THE ALARM TRIP LEVELS ..6
9.5 RELAY OUTPUTS ...6
9.6 TO CONFIGURE PDS LOAD CURRENT DIAGNOSTICS7
 9.6.1 To Configure the Logic Module for PDS modes 1 or 27
 To Configure Low and High Current Trip Alarms8
 9.6.3 To Attach Soft Alarms To A Relay Output9
 9.6.4 The Scaling Factor ..10
 9.6.5 To Adjust The Scaling Factor ..10
9.1 LOAD CURRENT MONITORING AND DIAGNOSTICS

Current flowing in a system of electrical heating elements (the ‘Load’) can be displayed on the controller by using a TE10 SSR fitted with intelligent current transformer, PDCTX, or an SSR or contactor with an external PDCTX.

Load current monitoring and diagnostics may be used with any time proportioned output, fitted in module position 1A, and uses the logic output wires which drive the SSR to return signals back to the controller. These signals represent the RMS value of the load current during the ON period, or load related alarm conditions. It is not designed for analogue outputs i.e. phase angle control.

It is also designed for single phase operation only.

There are two modes of operation:

1. **Mode 1**

 Detects if there is a **break in the heater circuit**. This includes heater or SSR open circuit. A single **Load Failure** alarm message is displayed on the lower readout of the controller.

2. **Mode 2**

 Provides the following:

<table>
<thead>
<tr>
<th>Display of true RMS load current</th>
<th>Displays the true RMS current in the ON state to the load.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low current alarm</td>
<td>Provides advanced warning of failure of one or more heaters in parallel</td>
</tr>
<tr>
<td>Load Failure (PLF) supplied in some SSRs</td>
<td></td>
</tr>
<tr>
<td>High current alarm</td>
<td>Typically used where element bunching may occur</td>
</tr>
<tr>
<td>Typically used where element bunching may occur</td>
<td></td>
</tr>
<tr>
<td>High current alarm</td>
<td>This will apply full power to the heaters which could result in an over temperature condition. This alarm provides early warning.</td>
</tr>
<tr>
<td>SSR short circuit</td>
<td>Indicates open circuit load conditions</td>
</tr>
<tr>
<td>Heater failure</td>
<td></td>
</tr>
</tbody>
</table>

9.2 EXAMPLE WIRING DIAGRAM (MODE 1 & 2 OPERATION)

Hardware Required

1. SSR type TE10/PDS2 OR
2. Intelligent current transformer type PD/CTX + contactor or zero voltage switching SSR

2216e controller configured for PDS mode 2 option using logic output. This module must be fitted in module position 1. (order code M2).

WARNING!
Take care that the controller is correctly wired for the mode of operation which is configured. Failure to do so may be hazardous in some situations.
9.3 OPERATION

9.3.1 To Read Load Current (mode 2 only)

<table>
<thead>
<tr>
<th>Do This</th>
<th>This Is The Display You Should See</th>
<th>Additional Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>From the 'HOME' display, Figure 1.4, Press (\uparrow) (\downarrow) until (\text{RmPS}) is shown in the upper display</td>
<td>(\text{RmPS}) (\text{S})</td>
<td>Current will be displayed in the lower readout. See also 'Display Modes' below.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>It will revert to the HOME display after 45 seconds or 10 seconds if an alarm is present</td>
</tr>
</tbody>
</table>

This display will be shown if:
I. The controller is unable to resolve the reading
II. The controller is obtaining a reading
III. The measurement has timed out i.e. current has not flowed for 15 seconds.

9.3.2 To Display Load Current Continuously in the Lower Readout (mode 2 only)

<table>
<thead>
<tr>
<th>Do This</th>
<th>This Is The Display You Should See</th>
<th>Additional Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>From the 'HOME' display, Figure 1.4, Press (\uparrow) (\downarrow) until (\text{SP}) is shown in the upper display Press (\uparrow) or (\downarrow) until (\text{RmPS}) is displayed in the lower display</td>
<td>(\text{d1 SP RmPS})</td>
<td>Current will be displayed in the lower readout continuously when the controller reverts to the HOME display, see also 'Display Modes' below.</td>
</tr>
</tbody>
</table>

9.3.3 Display Modes

SSR RMS On State Current
This is the default state when high or low current alarms are configured. The load current displayed is the steady state true rms current measured during the ON period.
The minimum on time is:
Mode 2 \(0.1\) second
9.3.4 How Heater Alarms Are Displayed

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-LCr</td>
<td>Alarm number: Low Current</td>
<td>Used for partial load failure detection. To avoid nuisance tripping due to supply voltage variations set to a value at least 15% below the minimum normal operating current.</td>
</tr>
<tr>
<td>-HCr</td>
<td>Alarm number: High Current</td>
<td>Used for load overcurrent protection. To avoid nuisance tripping due to supply voltage variations set to a value at least 15% above the maximum normal operating current. Note: This alarm is not intended to provide instantaneous safety protection from short circuit fault conditions.</td>
</tr>
<tr>
<td></td>
<td>Load Fail</td>
<td>This includes failure of the heater circuit or the SSR.</td>
</tr>
<tr>
<td></td>
<td>Heater Fail</td>
<td>No current is being drawn while the controller output demand signal is on.</td>
</tr>
<tr>
<td></td>
<td>SSR Fail</td>
<td>The load is continuously on while the controller output demand signal is off.</td>
</tr>
</tbody>
</table>

If an alarm is present it will flash a four character mnemonic in the lower display.

The following two messages are alarms which are produced as a result of failure within the process. In place of dashes the alarm number will appear i.e. 1, 2, 3, or 4.

The Alarm Messages are:-

- **LCr** (Low Current)
- **HCr** (High Current)
- **LdF** (Load Fail)
- **Hr.F** (Heater Fail)
- **Sr.F** (SSR Fail)
9.4 TO SET THE ALARM TRIP LEVELS

<table>
<thead>
<tr>
<th>Do This</th>
<th>This Is The Display You Should See</th>
<th>Additional Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>From the HOME display</td>
<td></td>
<td>To select the Alarm List header</td>
</tr>
<tr>
<td>press <code>L</code> until the <code>AL L, St</code> is</td>
<td></td>
<td></td>
</tr>
<tr>
<td>displayed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Press <code>button</code> until the desired</td>
<td></td>
<td>To select the diagnostic alarm parameter found under the Alarm List header</td>
</tr>
<tr>
<td>alarm number is displayed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Press <code>or</code> to adjust the alarm</td>
<td></td>
<td>The alarm trip level is set to 123</td>
</tr>
<tr>
<td>trip level</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.5 RELAY OUTPUTS

Any plug in module can be used for alarms provided they are not already being used for another purpose, such as control. Any one or more alarms can be attached to an output, which will operate when an alarm occurs. Contacts are rated at 2A 264Vac for operating external beacons or audible devices.
9.6 TO CONFIGURE PDS LOAD CURRENT DIAGNOSTICS

Configuration of PDS load current diagnostics is in four parts:-

1. Configure the Logic Module for PDS Mode 1 or 2 operation.
2. Configure the Low and High Current trip alarms.
3. Attach the alarms to operate an output relay.
4. Set up the Scaling Factor.

First enter Configuration Level. See Chapter 5

9.6.1 To Configure the Logic Module for PDS modes 1 or 2

<table>
<thead>
<tr>
<th>Do This</th>
<th>This Is The Display You Should See</th>
<th>Additional Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Press [Conf] until the [Conf] is displayed</td>
<td>[Conf]</td>
<td>This opens the configuration list associated with module position 1A</td>
</tr>
<tr>
<td>Press [Log] to show [Log]</td>
<td>[Log]</td>
<td>This shows the identity of the module</td>
</tr>
<tr>
<td>Press [Func] to show [Func]</td>
<td>[Func]</td>
<td>This shows the function of module</td>
</tr>
<tr>
<td>Press [S5r] or [S5r] to show [S5r] or [S5r] as required.</td>
<td>[S5r]</td>
<td>The module function is set to PDS mode 1</td>
</tr>
<tr>
<td>Press [Sen] to show [Sen]</td>
<td>[Sen]</td>
<td>This sets the output signal to normal for heating control</td>
</tr>
<tr>
<td>Press [nor] or [nor] to show [nor]</td>
<td>[nor]</td>
<td></td>
</tr>
</tbody>
</table>

2216e Controller
9.6.2 To Configure Low and High Current Trip Alarms

Alarm 1 will be configured as Load Current Low (\(L_{CR}\))
Alarm 2 will be configured as Load Current High (\(H_{CR}\))

<table>
<thead>
<tr>
<th>Do This</th>
<th>This Is The Display You Should See</th>
<th>Additional Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Press [button] until the (RL\ \text{Conf}) is displayed</td>
<td></td>
<td>This opens the configuration list which contains the Alarms</td>
</tr>
<tr>
<td>Press (\uparrow) to show (RL\ \text{1}) (alarm 1)</td>
<td></td>
<td>To select alarm 1</td>
</tr>
<tr>
<td>Press (\uparrow) or (\downarrow) to show (LC)</td>
<td></td>
<td>To make alarm 1 = Low Current</td>
</tr>
<tr>
<td>Press (\uparrow) until (RL\ \text{2}) (alarm 2) appears</td>
<td></td>
<td>To select alarm 2.</td>
</tr>
<tr>
<td>Press (\uparrow) or (\downarrow) to show (HC)</td>
<td></td>
<td>To make alarm 2 = High Current</td>
</tr>
</tbody>
</table>

Note:- The above alarms are known as SOFT ALARMS because they are indication only.

![Image](image)
9.6.3 To Attach Soft Alarms To A Relay Output

Any one alarm indicated above may be attached to an output (normally a relay). Alternatively any combination of alarms may be attached to operate a relay using the procedure below:

<table>
<thead>
<tr>
<th>Do This</th>
<th>This Is The Display You Should See</th>
<th>Additional Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Press “PAGE” key as many times as necessary to</td>
<td></td>
<td>Any output module can be configured for an alarm output provided it is not used for any other purpose, e.g. as a control output. In place of 3A you should select the module required, i.e. 1A or 2A.</td>
</tr>
<tr>
<td>Press until appears</td>
<td>![Image](d1 GF no ch)</td>
<td>d1 GF = digital functions no ch = no change</td>
</tr>
<tr>
<td>Press or until the first alarm you wish to attach to the 3A output is displayed e.g.</td>
<td>![Image](d1 GF nor)</td>
<td>After 0.5 second the display will revert to no ch to attach the alarm. Each time you scroll through the table of alarms note that two decimal points appear. This confirms that the particular alarm has been attached to the output. i.e. Hr rF 55rF etc.</td>
</tr>
<tr>
<td>Repeat the above step for every alarm to be attached to the output</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To remove alarms from an output press or until appears in the lower display. This will clear all alarms attached to this output.
9.6.4 The Scaling Factor

The value of the current displayed on the controller is scaled using the scaling factor. This is found in the n_{St} $Conf$ list. It is set, by default, to 100 and assumes a single turn through the current transformer. If two turns are made through the current transformer it will be necessary to adjust the scaling factor to 50 to obtain the same reading.

Under normal conditions you should not need to change the scaling factor.

If, however, you wish to change the sensitivity of the current reading, for example, to read very low currents you may need to change the number of turns through the PDCTX and/or adjust the scaling factor to compensate. See ‘Minimum Resolvable Current’.

9.6.5 To Adjust The Scaling Factor

<table>
<thead>
<tr>
<th>Do This</th>
<th>This Is The Display You Should See</th>
<th>Additional Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Press n_{St} $Conf$ button until n_{St} $Conf$ is displayed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Press L_eH until L_eH is displayed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Press \uparrow or \downarrow to change the scaling factor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minimum Resolvable Current

TE10 4A RMS. It is not possible to read currents lower than 4A when using a TE10.
PDCCTX 4A RMS for a single turn through the PDCTX

Should you wish to read currents lower than 4A using a PDCTX it is necessary to increase the number of turns through the PDCTX and adjust the scaling factor to compensate.

For example: To read 1.0A wind 4 turns through the PDCTX and adjust the scaling factor to 25 as shown in the table below.

| Scalar = $100/N$ Where N = Turns through PDCTX |
|---|---|---|---|
| N | Scalar | N | Scalar |
| 1 | 100 | 5 | 20 |
| 2 | 50 | 10 | 10 |

Maximum Resolvable Current

TE10 Determined by the maximum range of the SSR
PDCCTX 100A (or 100 ampere turns)

Finally Exit configuration level. See Chapter 5
10 Chapter 10 RETRANSMISSION

10.1 WHAT IS RETRANSMISSION..2
10.2 TO CONFIGURE RETRANSMISSION...3
10.3 SCALING RETRANSMITTED OUTPUT SIGNALS..........................4

10.1.1 To Range Retransmitted Output O_P ..4
10.1.2 To Range Retransmitted Setpoint S_P or Process Variable P_U5
10.1.3 To Range Retransmitted Error E_{rr} ..5
10.1 WHAT IS RETRANSMISSION

The controller can be configured to generate an analogue output signal which represents a selected parameter.
The parameters which can be configured for retransmission are:

1. Process Variable
2. Setpoint
3. Error
4. Control Output

The retransmission signal is available as 0-20mA, 4-20mA, 0-5V, 1-5V or 0-10V and is connected to terminals 1A and 1B when module 1A is fitted as a DC module.
10.2 TO CONFIGURE RETRANSMISSION

A DC module must be fitted in module position 1A.

First enter configuration level. See Chapter 5.

Then:

<table>
<thead>
<tr>
<th>Do This</th>
<th>This Is The Display You Should See</th>
<th>Additional Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Press () button until the (\text{IA Conf}) is displayed</td>
<td>![Display Image]</td>
<td>This opens the configuration list for module 1A.</td>
</tr>
<tr>
<td>Press () to show (\text{id})</td>
<td>![Display Image]</td>
<td>This is the identity of the module fitted in this position. The module must be a DC output (\text{dCP}).</td>
</tr>
<tr>
<td>Press () to show (\text{Func})</td>
<td>![Display Image]</td>
<td>The choices are: (\text{nonE}) (\text{Control Outputs}) (\text{HEAT}) (\text{COOL}) (\text{Retransmission}) (\text{DP}) (\text{PU}) (\text{Err}) (\text{eSP})</td>
</tr>
<tr>
<td>Press () or () to select the parameter for retransmission</td>
<td>![Display Image]</td>
<td></td>
</tr>
<tr>
<td>Press () to show (\text{SEn5})</td>
<td>![Display Image]</td>
<td>If (\text{Func}) is a retransmission parameter the value of (\text{SEn5}) has no effect.</td>
</tr>
</tbody>
</table>
The retransmitted output signal can be limited by adjusting these parameters.

To reverse the output, set \(\text{Out}_L \) to 20.0 and \(\text{Out}_H \) to 0.0.

10.3 SCALING RETRANSMITTED OUTPUT SIGNALS

The analogue output signal may be set between 0 and 20mA. A 4-20mA output is achieved by applying an offset as described below.

A 0 to 10Vdc output may be achieved by fitting a 500 ohm resistor across the output terminals 1A and 1B. A 0 to 5Vdc output may be achieved by fitting a 250 ohm resistor across the output terminals 1A and 1B. Suitable resistors are supplied with the controller.

10.1.1 To Range Retransmitted Output \(\text{Up} \)

For output of 0-100% = 0-20mA

set \(\text{Out}_H \) to 20.0 and \(\text{Out}_L \) to 0.0

For output of 0-100% = 4-20mA

set \(\text{Out}_H \) to 20.0 and \(\text{Out}_L \) to 4.0
10.1.2 To Range Retransmitted Setpoint SP or Process Variable PV

For output of 0 - 1000°C = 0-20mA
set OUT_L to 0.0 and OUT_H to 20.0
and $rnGL$ to 0.0 and $rnGH$ to 1000

$rnGL$ is the low limit of the input range
$rnGH$ is the high limit of the input range
These are found in the $Conf$ list as described in Chapter 5. If the range limits are not set the retransmitted output is the maximum input range as stated in the order code, Appendix A.

10.1.3 To Range Retransmitted Error Err

The retransmitted output value is dependent upon the range limits $rnGH$ and $rnGL$ set in the $Conf$ list of the controller.

The following examples are given to illustrate the retransmitted error values:

Example 1:
Type K thermocouple,
$rnGL$ = -200
$rnGH$ = +200
Retransmitted Value
0mA for an error of -200
10mA for an error of 0
20mA for an error of +200

Example 2:
As above but $rnGL$ = -10 and $rnGH$ = 400
Retransmitted Value
0mA for an error of -10
0.0487mA for an error of 0
20mA for an error of +400

Note:
To read a negative error it is necessary to set $rnGL$ to a negative limit
The 2216e controller has a modular hardware construction with the option of three outputs and one communications port.

The ordering code is in two parts: the hardware code followed by the software code. The hardware code specifies the hardware build of the controller, and the software code the software configuration. The software code is optional.

<table>
<thead>
<tr>
<th>UK Default</th>
<th>USA Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type K TIC 0 to 1000°C</td>
<td>Type J TIC 32 to 2192°F</td>
</tr>
</tbody>
</table>

Hardware code

- Model Number
- Supply Voltage
- I/O 1
- I/O 2
- Output 3
- Comms
- Language
- Manual
- Sensor input
- Range min
- Range Max
- Options

Software code

- Display units
Hardware code

<table>
<thead>
<tr>
<th>Model number</th>
<th>Function</th>
<th>Supply voltage</th>
<th>Output 1</th>
<th>Input/Output 2</th>
<th>Output 3</th>
<th>Comms</th>
<th>Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>2216e</td>
<td>CC</td>
<td>VH</td>
<td>LH</td>
<td>RC</td>
<td>FL</td>
<td>2YM</td>
<td>ENG</td>
</tr>
</tbody>
</table>

- **Function**
 - CC: Controller
 - VC: Valve
 - NF: On/Off
 - AL: Alarm Unit

- **Supply voltage**
 - VH: 85-264Vac

Output 1
- XX: Not fitted
- Relay: 2-pin
- R1: Unconfigured
- RU: VP raise O/P
- RH: PID heating
- FH: High alarm 1
- FL: Low alarm 1
- DB: Deviation band 1
- DL: Dev. low alarm 1
- DH: Dev high alarm 1

Logic
- L1: Unconfigured
- LH: PID heating
- M1: PDS mode 1
- M2: PDS mode 2
- T1: Unconfigured
- TH: PID heating
- TU: VP raise O/P
- DC: control isolated
- D3: Unconfigured
- H6: 0-20mA PID heating
- H7: 4-20mA PID heating
- C6: 0-20mA PID cooling
- C7: 4-20mA PID cooling
- DC: Retrans. (isolated)

Select from table A

Table A

D6	Fitted unconfigured
V-	PV retrans
S-	Setpoint
O-	Output
Z-	Empr

Second character
- -1: 0-20mA
- -2: 4-20mA
- -3: 0-5V
- -4: 1-5V
- -5: 0-10V

Output 2
- XX: Not fitted
- Relay: 2-pin
- R1: Unconfigured
- RH: Heating output
- RC: Cooling output
- RW: VP lower O/P
- FH: High alarm 2
- FL: Low alarm 2
- DB: Deviation band 2
- DL: Dev. low alarm 2
- DH: Dev high alarm 2

Logic
- AM: Auto manual select
- S2: Setpoint 2 select
- AC: Alarm ack/reset
- EH: Integral hold
- SB: Standby mode
- SR: PDS remote SP select
- M5: CTX mode 5 current input

Logic output
- L1: Unconfigured
- LC: PID cooling
- LH: Heating output
- Triac
- T1: Unconfigured
- TC: PID cooling
- TW: VP lower O/P

Output 3
- XX: Not fitted
- RF: Unconfigured
- RH: Heating output
- RC: Cooling output
- RW: VP lower O/P
- FH: High alarm 2
- FL: Low alarm 3
- DB: Deviation band 3
- DL: Dev. low alarm 3
- DH: Dev high alarm 3
- AL: Hi & Lo alarms 1 & 2

Logic Input
- AM: Auto manual select
- S2: Setpoint 2 select
- AC: Alarm ack/reset
- EH: Integral hold
- SB: Standby mode
- SR: PDS remote SP select

Comms
- 2XX: Not fitted
- Modbus protocol
- 2YM: 2-wire RS485
- 2AM: RS422
- E1-Byinch
- 2YE: 2-wire RS485
- 2FE: 4-wire RS422
- 2AE: RS232
- DeviceNet
- 2DN: DeviceNet
- PDS Input
- 2RS: Setpoint

Manual
- XXX: No manual
- ENG: English
- FRA: French
- GER: German
- ITA: Italian
- NED: Dutch
- SPA: Spanish
- SWE: Swedish
Software code

<table>
<thead>
<tr>
<th>Sensor input</th>
<th>Range min</th>
<th>Range max</th>
<th>Units</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>0 (note 3)</td>
<td>1000 (note 3)</td>
<td>C</td>
<td>CF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensor input</th>
<th>Standard sensors</th>
<th>Range Min</th>
<th>Range Min</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>J thermocouple</td>
<td>-210</td>
<td>-340</td>
<td>C</td>
</tr>
<tr>
<td>K</td>
<td>K thermocouple</td>
<td>-200</td>
<td>-325</td>
<td>CF</td>
</tr>
<tr>
<td>T</td>
<td>T thermocouple</td>
<td>-200</td>
<td>-325</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>L thermocouple</td>
<td>-200</td>
<td>-325</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>N thermocouple</td>
<td>-200</td>
<td>-325</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>R thermocouple</td>
<td>-50</td>
<td>-58</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>S thermocouple</td>
<td>-50</td>
<td>-58</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>B thermocouple</td>
<td>0</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Platinel II therm'ple</td>
<td>0</td>
<td>32</td>
<td>CF</td>
</tr>
<tr>
<td>Z</td>
<td>RTD/PT100</td>
<td>-200</td>
<td>-325</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factory download input</th>
<th>Range Min</th>
<th>Range Min</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C °C thermocouple</td>
<td>0</td>
<td>2319</td>
<td>C</td>
</tr>
<tr>
<td>W5%Re/W26%Re (Hoskins)</td>
<td>0</td>
<td>2399</td>
<td>32</td>
</tr>
<tr>
<td>W3%Re/W25%Re</td>
<td>0</td>
<td>2000</td>
<td>32</td>
</tr>
<tr>
<td>E thermocouple</td>
<td>0</td>
<td>1399</td>
<td>32</td>
</tr>
<tr>
<td>Ni/Ni18%Mo</td>
<td>0</td>
<td>1870</td>
<td>32</td>
</tr>
<tr>
<td>Pt20%Rh/Pt40%R (Englehard)</td>
<td>0</td>
<td>2000</td>
<td>32</td>
</tr>
<tr>
<td>W/W26%Re (Englehard)</td>
<td>0</td>
<td>2300</td>
<td>50</td>
</tr>
<tr>
<td>W/W26%Re (Bucose)</td>
<td>0</td>
<td>2000</td>
<td>32</td>
</tr>
<tr>
<td>Pt10%Rh/Pt40%R (Englehard)</td>
<td>-200</td>
<td>1800</td>
<td>392</td>
</tr>
<tr>
<td>Exergen K80 IR</td>
<td>0</td>
<td>9999</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process inputs</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>-9.99 to -80.00mV</td>
<td>-999</td>
</tr>
<tr>
<td>Y</td>
<td>0 to 20mA</td>
<td>-999</td>
</tr>
<tr>
<td>A</td>
<td>4 to 20ma</td>
<td>-999</td>
</tr>
<tr>
<td>W</td>
<td>0 to 5Vdc</td>
<td>-999</td>
</tr>
<tr>
<td>G</td>
<td>1 to 5Vdc</td>
<td>-999</td>
</tr>
<tr>
<td>V</td>
<td>0 to 10Vdc</td>
<td>-999</td>
</tr>
</tbody>
</table>
Notes:

1. PDS heater break detect will transmit the power demand to a TE10S solid state relay and read back a heater break alarm.

2. PDS current monitoring will transmit the power demand to a TE10S solid state relay and read back load current and open and short circuit alarms.

3. Setpoint limits: Include the decimal position required in the displayed value – up to one for temperature inputs, up to two for process inputs.

4. An external 1% current sense resistor is supplied as standard. If greater accuracy is required, a 0.1% 2.49Ω can be ordered as part number SUB2K/249R.1.
B Appendix B SAFETY and EMC INFORMATION

This controller is intended for industrial temperature and process control applications when it will meet the requirements of the European Directives on Safety and EMC. Use in other applications, or failure to observe the installation instructions of this handbook may impair safety or EMC. The installer must ensure the safety and EMC of any particular installation.

Safety

This controller complies with the European Low Voltage Directive 73/23/EEC, amended by 93/68/EEC, by the application of the safety standard EN 61010.

Electromagnetic compatibility

This controller conforms with the essential protection requirements of the EMC Directive 89/336/EEC, amended by 93/68/EEC, by the application of a Technical Construction File. This instrument satisfies the general requirements of the industrial environment defined in EN 50081-2 and EN 50082-2. For more information on product compliance refer to the Technical Construction File.

GENERAL

The information contained in this manual is subject to change without notice. While every effort has been made to ensure the accuracy of the information, your supplier shall not be held liable for errors contained herein.

Unpacking and storage

The packaging should contain an instrument mounted in its sleeve, two mounting brackets for panel installation and this operating book. Certain ranges are supplied with an input adapter. If on receipt, the packaging or the instrument are damaged, do not install the product but contact your supplier. If the instrument is to be stored before use, protect from humidity and dust in an ambient temperature range of -30°C to +75°C.

SERVICE AND REPAIR

This controller has no user serviceable parts. Contact your supplier for repair.

Caution: Charged capacitors

Before removing an instrument from its sleeve, disconnect the supply and wait at least two minutes to allow capacitors to discharge. It may be convenient to partially withdraw the instrument from the sleeve, then pause before completing the removal. In any case, avoid touching the exposed electronics of an instrument when withdrawing it from the sleeve. Failure to observe these precautions may cause damage to components of the instrument or some discomfort to the user.

Electrostatic discharge precautions
When the controller is removed from its sleeve, some of the exposed electronic components are vulnerable to damage by electrostatic discharge from someone handling the controller. To avoid this, before handling the unplugged controller discharge yourself to ground.

Cleaning

Do not use water or water based products to clean labels or they will become illegible. Isopropyl alcohol may be used to clean labels. A mild soap solution may be used to clean other exterior surfaces of the product.

INSTALLATION SAFETY REQUIREMENTS

Safety Symbols

Various symbols are used on the instrument, they have the following meaning:

⚠️ Caution, (refer to the accompanying documents) ⚡ Functional earth (ground) terminal

The functional earth connection is not required for safety purposes but is used to ground RFI filters.

Personnel

Installation must only be carried out by qualified personnel.

Enclosure of live parts

To prevent hands or metal tools touching parts that may be electrically live, the controller must be installed in an enclosure.

Caution: Live sensors

The logic and PDS outputs are electrically connected to the main PV input, (thermocouple etc.). If the temperature sensor is connected directly to an electrical heating element then these non-isolated inputs and outputs will also be live. The controller is designed to operate under these conditions. However you must ensure that this will not damage other equipment connected to these inputs and outputs and that service personnel do not touch connections to these I/O while they are live. With a live sensor, all cables, connectors and switches for connecting the sensor and non-isolated inputs and outputs must be mains rated.

Wiring

It is important to connect the controller in accordance with the wiring data given in this handbook. Take particular care not to connect AC supplies to the low voltage sensor input or other low level inputs and outputs. Only use copper conductors for connections, (except thermocouple). Ensure that the wiring of installations comply with all local wiring regulations. For example in the in the UK, use the latest version of the IEE wiring regulations, (BS7671). In the USA, use NEC Class 1 wiring methods.
Power Isolation

The installation must include a power isolating switch or circuit breaker that disconnects all current carrying conductors. The device should be mounted in close proximity to the controller, within easy reach of the operator and marked as the disconnecting device for the instrument.

Earth leakage current

Due to RFI Filtering there is an earth leakage current of less than 0.5mA. This may affect the design of an installation of multiple controllers protected by Residual Current Device, (RCD) or Ground Fault Detector, (GFD) type circuit breakers.

Overcurrent protection

To protect the internal PCB tracking within the controller against excess currents, the AC power supply to the controller and power outputs must be wired through the fuse or circuit breaker specified in the technical specification.

Voltage rating

The maximum continuous voltage applied between any connection to ground must not exceed 264Vac.

The controller should not be wired to a three phase supply with an unearthed star connection. Under fault conditions such a supply could rise above 264Vac with respect to ground and the product would not be safe.

Voltage transients across the power supply connections, and between the power supply and ground, must not exceed 2.5kV. Where occasional voltage transients over 2.5kV are expected or measured, the power installation to both the instrument supply and load circuits should include a transient limiting device.

These units will typically include gas discharge tubes and metal oxide varistors that limit and control voltage transients on the supply line due to lightning strikes or inductive load switching. Devices are available in a range of energy ratings and should be selected to suit conditions at the installation.

Conductive pollution

Electrically conductive pollution must be excluded from the cabinet in which the controller is mounted. For example, carbon dust is a form of electrically conductive pollution. To secure a suitable atmosphere, install an air filter to the air intake of the cabinet. Where condensation is likely, for example at low temperatures, include a thermostatically controlled heater in the cabinet.

Grounding of the temperature sensor shield

In some installations it is common practice to replace the temperature sensor while the controller is still powered up. Under these conditions, as additional protection against electric shock, we recommend that the shield of the temperature sensor is grounded. Do not rely on grounding through the framework of the machine.
Over-temperature protection

When designing any control system it is essential to consider what will happen if any part of the system should fail. In temperature control applications the primary danger is that the heating will remain constantly on. Apart from spoiling the product, this could damage any process machinery being controlled, or even cause a fire.

Reasons why the heating might remain constantly on include:
- the temperature sensor becoming detached from the process
- thermocouple wiring becoming short circuit;
- the controller failing with its heating output constantly on
- an external valve or contactor sticking in the heating condition
- the controller setpoint set too high.

Where damage or injury is possible, we recommend fitting a separate over-temperature protection unit, with an independent temperature sensor, which will isolate the heating circuit.

Please note that the alarm relays within the controller will not give protection under all failure conditions.

INSTALLATION REQUIREMENTS FOR EMC

To ensure compliance with the European EMC directive certain installation precautions are necessary as follows:

- For general guidance refer to EMC Installation Guide, HA025464.
- When using relay or triac outputs it may be necessary to fit a filter suitable for suppressing the conducted emissions. The filter requirements will depend on the type of load. For typical applications we recommend Schaffner FN321 or FN612.
- If the unit is used in table top equipment which is plugged into a standard power socket, then it is likely that compliance to the commercial and light industrial emissions standard is required. In this case to meet the conducted emissions requirement, a suitable mains filter should be installed. We recommend Schaffner types FN321 and FN612.

Routing of wires

To minimise the pick-up of electrical noise, the low voltage DC connections and the sensor input wiring should be routed away from high-current power cables. Where it is impractical to do this, use shielded cables with the shield grounded at both ends. In general keep cable lengths to a minimum.
TECHNICAL SPECIFICATION

Input

General
- Range: ± 100mV and 0 to 10Vdc (auto ranging)
- Sample rate: 9Hz (10mS)
- Calibration accuracy: ±2% of reading, ±1 LSD, ±1°C/F
- Resolution: <1µV for ± 100mV range, <0.2mV for 10Vdc range
- Linearisation accuracy: <0.1% of reading
- Input filter: 1.0 to 999.9 secs
- Zero offset: User adjustable over the fully display range

Thermocouple
- Types: Refer to Sensor inputs and display ranges table
- Cold junction compensation: Automatic compensation typically >30 to 1 rejection of ambient temperature change (incorporates INSTANT ACCURACY™ cold junction sensing technology).
- External references: 32, 113 and 122°F (0, 45 and 50°C)

RTD/PT100
- Type: 3-wire, Pt100 DIN43760
- Bulb current: 0.2mA
- Lead compensation: No error for 22 ohms in all 3 leads

Process
- Linear: -9.99 to 80.00mV, 0 to 20mA or 0 to 10Vdc (All configurable between limits)

Outputs

Relay
- Rating: 2-pin relay
 - Min: 12V, 100mA dc to Max: 2A, 264Vac resistive
- Rating: change-over, alarm relay
 - Min: 6V, 1mA dc to Max: 2A, 264Vac resistive

Logic
- Rating: 18Vdc at 24mA (non-isolated)
- Application: Heating, cooling or alarms

Triac
- Rating: 1A, 30 to 264Vac resistive
- Application: Heating or cooling

Analog
- Range: Isolated, 0 to 20mA or 0 to 10Vdc (configurable between limits)
- Application: Heating or cooling

Communications

Digital
- Transmission standard: EIA-485 2wire, EIA-422 4 wire or EIA-232 at 1200, 2400, 4800, 9600, 19,200 baud (125K, 250K, 500K for DeviceNet)
- Protocols: Modbus®, Ei-Bisynch, DeviceNet

PDS
- Setpoint input: Setpoint input from master PDS controller
Control functions

<table>
<thead>
<tr>
<th>Control</th>
<th>Modes</th>
<th>PID or PI with overshoot inhibition, PD, PI, P only or On/Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Heating and cooling</td>
<td></td>
</tr>
<tr>
<td>Auto/manual</td>
<td>Bumpless transfer</td>
<td></td>
</tr>
<tr>
<td>Setpoint rate limit</td>
<td>0.01 to 99.99 degrees or display units per minute</td>
<td></td>
</tr>
<tr>
<td>Cooling algorithms</td>
<td>Linear; Water (non-linear); Fan (minimum on time), Oil, proportional only</td>
<td></td>
</tr>
<tr>
<td>Tuning</td>
<td>One-shot tune</td>
<td>Automatic calculation of PID and overshoot inhibition parameters</td>
</tr>
<tr>
<td>Automatic droop compensation</td>
<td>Automatic calculation of manual reset value when using PD control</td>
<td></td>
</tr>
<tr>
<td>Alarms</td>
<td>Types</td>
<td>Full scale high or low. Deviation high, low, or band</td>
</tr>
<tr>
<td>Modes</td>
<td>Latching or non-latching. Normal or blocking action</td>
<td>Up to four process alarms can be combined onto a single output</td>
</tr>
</tbody>
</table>

General

<table>
<thead>
<tr>
<th>Display</th>
<th>Dual, 4 digit x 7 segment high intensity LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions and weight</td>
<td>1.89W x 1.89H x 4.06D in (48W x 48H x 103Dmm) 8.82oz (250g)</td>
</tr>
<tr>
<td>Supply</td>
<td>85 to 264Vac -15%, +10%. 48 to 62Hz. 10watts max</td>
</tr>
<tr>
<td>Temperature and RH</td>
<td>Operating: 32 to 131°F (0 to 55°C), RH: 5 to 90% non-condensing. Storage: 14 to 158°F (-10 to 70°C)</td>
</tr>
<tr>
<td>Panel sealing</td>
<td>IP 65</td>
</tr>
<tr>
<td>Electromagnetic compatibility</td>
<td>Meets generic emissions standard EN50081-2 for industrial environments</td>
</tr>
<tr>
<td>Safety standards</td>
<td>Meets general requirements of EN50082-2(95) standards for industrial environments</td>
</tr>
<tr>
<td>Atmospheres</td>
<td>Electrically conductive pollution must be excluded from the cabinet in which this controller is mounted. This product is not suitable for use above 6,562ft (2000m) or in corrosive or explosive atmospheres without further protection.</td>
</tr>
</tbody>
</table>